Intercellular Cell Adhesion (intercellular + cell_adhesion)

Distribution by Scientific Domains


Selected Abstracts


Salvianolic acid B attenuates VCAM-1 and ICAM-1 expression in TNF-,-treated human aortic endothelial cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2001
Yung-Hsiang Chen
Abstract Attachment to, and migration of leukocytes into the vessel wall is an early event in atherogenesis. Expression of cell adhesion molecules by the arterial endothelium may play a major role in atherosclerosis. It has been suggested that antioxidants inhibit the expression of adhesion molecules and may thus attenuate the processes leading to atherosclerosis. In the present study, the effects of a potent water-soluble antioxidant, salvianolic acid B (Sal B), and an aqueous ethanolic extract (SME), both derived from a Chinese herb, Salvia miltiorrhiza, on the expression of endothelial-leukocyte adhesion molecules by tumor necrosis factor-, (TNF-,)-treated human aortic endothelial cells (HAECs) were investigated. When pretreated with SME (50 and 100 ,g/ml), the TNF-,-induced expression of vascular adhesion molecule-1 (VCAM-1) was notably attenuated (77.2,±,3.2% and 80.0,±,2.2%, respectively); and with Sal B (1, 2.5, 5, 10, and 20 ,g/ml), 84.5,±,1.9%, 78.8,±,1.2%, 58.9,±,0.4%, 58.7,±,0.9%, and 57.4,±,0.3%, respectively. Dose-dependent lowering of expression of intercellular cell adhesion molecule-1 (ICAM-1) was also seen with SME or Sal B. In contrast, the expression of endothelial cell selectin (E-selectin) was not affected. SME (50 ,g/ml) or Sal B (5 ,g/ml) significantly reduced the binding of the human monocytic cell line, U937, to TNF-,-stimulated HAECs (45.7,±,2.5% and 55.8,±,1.2%, respectively). SME or Sal B significantly inhibited TNF-,-induced activation of nuclear factor kappa B (NF-,B) in HAECs (0.36- and 0.48-fold, respectively). These results demonstrate that SME and Sal B have anti-inflammatory properties and may explain their anti-atherosclerotic properties. This new mechanism of action of Sal B and SME, in addition to their previously reported inhibition of LDL, may help explain their efficacy in the treatment of atherosclerosis. J. Cell. Biochem. 82:512,521, 2001. © 2001 Wiley-Liss, Inc. [source]


S -Allyl- L -Cysteine Sulfoxide Inhibits Tumor Necrosis Factor-Alpha Induced Monocyte Adhesion and Intercellular Cell Adhesion Molecule-1 Expression in Human Umbilical Vein Endothelial Cells

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2010
Chai Hui
Abstract Garlic and its water-soluble allyl sulfur-containing compound, S -Allyl- L -cysteine Sulfoxide (ACSO), have shown antioxidant and anti-inflammatory activities, inhibiting the development of atherosclerosis. However, little is known about the mechanism(s) underlying the therapeutic effect of ACSO in inhibiting the formation of atherosclerostic lesion. This study aimed to investigate whether ACSO could modulate tumor necrosis factor-alpha (TNF-,)-induced expression of intercellular cell adhesion molecule-1, monocyte adhesion and TNF-,-mediated signaling in human umbilical vein endothelial cells. While TNF-, promoted the intercellular cell adhesion molecule-1 mRNA transcription in a dose- and time-dependent manner, ACSO treatment significantly reduced the levels of TNF-,-induced intercellular cell adhesion molecule-1 mRNA transcripts (P < 0.01). Furthermore, ACSO dramatically inhibited TNF-, triggered adhesion of THP-1 monocytes to endothelial cells and porcine coronary artery rings. Moreover, ACSO mitigated TNF-, induced depolarization of mitochondrial membrane potential and overproduction of superoxide anion, associated with the inhibition of NOX4, a subunit of nicotinamide adenine dinucleotide phosphate-oxidase, mRNA transcription. In addition, ACSO also inhibited TNF-,-induced phosphorylation of JNK, ERK1/2 and I,B, but not p38. Apparently, ACSO inhibited proinflammatory cytokine-induced adhesion of monocytes to endothelial cells by inhibiting the mitogen-activated protein kinase signaling and related intercellular cell adhesion molecule-1 expression, maintaining mitochondrial membrane potential, and suppressing the overproduction of superoxide anion in endothelial cells. Therefore, our findings may provide new insights into ACSO on controlling TNF-,-mediated inflammation and vascular disease. Anat Rec, 2010. © 2010 Wiley-Liss, Inc. [source]


Endothelial cell expression of adhesion molecules is induced by fetal plasma from pregnancies with umbilical placental vascular disease

BJOG : AN INTERNATIONAL JOURNAL OF OBSTETRICS & GYNAECOLOGY, Issue 7 2002
Xin Wang
Objective To test the hypothesis that local production with spill into the fetal circulation of factor(s) injurious to endothelium is responsible for the vascular pathology present when the umbilical artery Doppler study is abnormal. Expression of adhesion molecules is a feature of endothelial cell activation. Design Case,control study. Setting University teaching hospital. Samples Fetal plasma was collected from 27 normal pregnancies, 39 pregnancies with umbilical placental vascular disease defined by abnormal umbilical artery Doppler and 11 pregnancies with pre-eclampsia and normal umbilical artery Doppler. Methods Isolated and cultured human umbilical vein endothelial cells from normal pregnancies were incubated with fetal plasma from three study groups. mRNA expression of intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were assessed by reverse transcription-polymerase chain reaction. To confirm the occurrence of this in vivo, we measured the levels of soluble fractions of sICAM-1, sVCAM-1 and sPECAM-1 in the fetal circulation in the fetal plasma used for endothelial cell incubation. Results The mRNA expression of ICAM-1 [median 1.1 (interquartile range 0.5,1.9) vs 0.7 (0.3,1.2), P < 0.05] and PECAM-1 [2.1 (1.2,3.0) vs 1.5 (0.7,2.1), P < 0.05] was significantly higher following incubation with fetal plasma from umbilical placental vascular disease compared with the normal group. There was no difference in the expression of VCAM-1 [1.2 (0.9,1.8) vs 1.1 (0.8,1.6), ns]. The group with maternal pre-eclampsia and normal umbilical artery Doppler did not differ from the normal group. In the umbilical placental vascular disease group, the results were similar in the presence or absence of pre-eclampsia. For soluble fractions of the adhesion molecules released into the fetal circulation, we found the levels (ng/mL) of sICAM-1 [median 248.5 (interquartile range 197.3,315.7) vs 174.2 (144.5,212.9), P < 0.05] and sPECAM-1 [9.3 (6.2,11.1) vs 6.1 (5.4,7.7), P < 0.05] in fetal plasma to be significantly increased in the presence of umbilical placental vascular disease compared with the normal. Conclusions Vascular disease in the fetal umbilical placental circulation is associated with an elevation in mRNA expression by endothelial cells of ICAM-1 and PECAM-1. Our study provides evidence for endothelial cell activation and dysfunction in umbilical placental vascular disease. We speculate that the plasma factor(s) affecting the vessels of the umbilical villous tree is locally released by the trophoblast. The occurrence of the maternal syndrome of pre-eclampsia appears to be independent of this. [source]