Interatrial Conduction Time (interatrial + conduction_time)

Distribution by Scientific Domains


Selected Abstracts


Usefulness of Interatrial Conduction Time to Distinguish Between Focal Atrial Tachyarrhythmias Originating from the Superior Vena Cava and the Right Superior Pulmonary Vein

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 12 2008
KUAN-CHENG CHANG M.D.
Objective: Differentiation of the tachycardia originating from the superior vena cava (SVC) or the right superior pulmonary vein (RSPV) is limited by the similar surface P-wave morphology and intraatrial activation pattern during tachycardia. We sought to find a simple method to distinguish between the two tachycardias by analyzing the interatrial conduction time. Methods: Sixteen consecutive patients consisting of 8 with SVC tachycardia and the other 8 with RSPV tachycardia were studied. The interatrial conduction time from the high right atrium (HRA) to the distal coronary sinus (DCS) and the intraatrial conduction time from the HRA to the atrial electrogram at the His bundle region (HIS) were measured during the sinus beat (SR) and during the tachycardia-triggering ectopic atrial premature beat (APB). The differences of interatrial (,[HRA-DCS]SR-APB) and intraatrial (,[HRA-HIS]SR-APB) conduction time between SR and APB were then obtained. Results: The mean ,[HRA-DCS]SR-APB was 1.0 ± 5.2 ms (95% confident interval [CI],3.3,5.3 ms) in SVC tachycardia and 38.5 ± 8.8 ms (95% CI 31.1,45.9 ms) in RSPV tachycardia. The mean ,[HRA-HIS]SR-APB was 1.5 ± 5.3 ms (95% CI ,2.9,5.9 ms) in SVC tachycardia and 19.9 ± 12.0 ms (95% CI 9.9,29.9 ms) in RSPV tachycardia. The difference of ,[HRA-DCS]SR-APB between SVC and RSPV tachycardias was wider than that of ,[HRA-HIS]SR-APB (37.5 ± 9.3 ms vs. 18.4 ± 15.4 ms, P < 0.01). Conclusions: The wide difference of the interatrial conduction time ,[HRA-DCS]SR-APB between SVC and RSPV tachycardias is a useful parameter to distinguish the two tachycardias and may avoid unnecessary atrial transseptal puncture. [source]


Can Simple Doppler Measurements Estimate Interatrial Conduction Time?

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 1p2 2003
DRAGOS COZMA
COZMA, D., et al.: Can Simple Doppler Measurements Estimate Interatrial Conduction Time?Prolongation of the interatrial conduction time (ia-CT) is considered an important factor in the pathophysiology of atrial fibrillation (AF) and as a criterion to perform multisite atrial pacing. Measurement of ia-CT requires an electrophysiologic study. The aim of this study was to compare echocardiographic with electrophysiologic measurements to determine if they are correlated. Methods and Results: The study included 32 consecutive patients who underwent electrophysiologic studies. We measured ia-CT between the high right atrium and the distal coronary sinus. In all patients we measured P wave duration, left atrial diameter and area, and ia-CT by Doppler echocardiography was measured as the difference in time intervals between the QRS onset and the tricuspid A wave, and the QRS onset and the mitral A wave (DT). Ia-CT was statistically correlated with DT(r = 0.79, P < 0.0001), but not with P wave duration or left atrial dimensions. Conclusions: Measurement DT may be reliable to estimate ia-CT without invasive procedure. Accordingly, DT could be used as a simple selection criterion when considering patients for atrial resynchronization therapy. (PACE 2003; 26[Pt. II]:436,439) [source]


Aging-Related Increase to Inducible Atrial Fibrillation in the Rat Model

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2002
HIDEKI HAYASHI M.D.
Aging and Atrial Fibrillation.Introduction: Aging is associated with atrial interstitial fibrosis and increased incidence of atrial fibrillation (AF). We hypothesized that aged rats are suitable for study of aging-related AF and that partial atrial cellular uncoupling induced with heptanol in young rats mimics aging-related AF. Methods and Results: Interatrial conduction time and atrial response to burst atrial pacing were evaluated in 11 young (2,3 months) and 12 old (22,24 months) male rats (Fisher 344) in the Langendorff-perfused setting. At baseline, sustained (>30 sec) atrial tachycardia (AT) and AF were induced in 10 of 12 and in 7 of 12 old rats, respectively. No such arrhythmias could be induced in the young rats. Old rats had significantly (P < 0.01) longer interatrial conduction time and P wave durations than the young rats. Burst pacing failed to induce AT and AF in all 11 young rats studied. The effects of heptanol 2 to 10 ,M were studied in both groups. Heptanol 2 to 5 ,M promoted inducible AT in all 5 young rats studied; however, when its concentration was raised to 10 ,M, AT could no longer be induced in any of the 5 young rats. No AF could be induced in any of the 5 young rats at heptanol concentrations of 2 to 10 ,M. In the old rats, AF could still be induced during perfusion of 2 ,M heptanol. However, when its concentration was raised to 5 and 10 ,M, AF could not be induced in any of the 6 old rats studied. Optical mapping using a potentiometric dye showed a periodic single wavefront of activation during AT in both groups and 2 to 4 independent wavefronts propagating in different directions during AF in the old rats. Histology revealed a significant increase in interstitial atrial fibrosis (P < 0.01), atrial cell size (P < 0.05), and heart weight in old versus young rats. Fibrosis in the old rats was highly heterogeneous. Conclusion: The rat model is suitable for study of aging-related AF. Uniform partial atrial cellular uncoupling with heptanol perfusion in the young rats, although promoting inducible AT, does not mimic aging-related AF. The results suggest that heterogeneous atrial interstitial fibrosis and atrial cell hypertrophy might contribute to the aging-related increase in atrial conduction slowing, conduction block, and inducible AF in the old rat model. [source]


Usefulness of Interatrial Conduction Time to Distinguish Between Focal Atrial Tachyarrhythmias Originating from the Superior Vena Cava and the Right Superior Pulmonary Vein

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 12 2008
KUAN-CHENG CHANG M.D.
Objective: Differentiation of the tachycardia originating from the superior vena cava (SVC) or the right superior pulmonary vein (RSPV) is limited by the similar surface P-wave morphology and intraatrial activation pattern during tachycardia. We sought to find a simple method to distinguish between the two tachycardias by analyzing the interatrial conduction time. Methods: Sixteen consecutive patients consisting of 8 with SVC tachycardia and the other 8 with RSPV tachycardia were studied. The interatrial conduction time from the high right atrium (HRA) to the distal coronary sinus (DCS) and the intraatrial conduction time from the HRA to the atrial electrogram at the His bundle region (HIS) were measured during the sinus beat (SR) and during the tachycardia-triggering ectopic atrial premature beat (APB). The differences of interatrial (,[HRA-DCS]SR-APB) and intraatrial (,[HRA-HIS]SR-APB) conduction time between SR and APB were then obtained. Results: The mean ,[HRA-DCS]SR-APB was 1.0 ± 5.2 ms (95% confident interval [CI],3.3,5.3 ms) in SVC tachycardia and 38.5 ± 8.8 ms (95% CI 31.1,45.9 ms) in RSPV tachycardia. The mean ,[HRA-HIS]SR-APB was 1.5 ± 5.3 ms (95% CI ,2.9,5.9 ms) in SVC tachycardia and 19.9 ± 12.0 ms (95% CI 9.9,29.9 ms) in RSPV tachycardia. The difference of ,[HRA-DCS]SR-APB between SVC and RSPV tachycardias was wider than that of ,[HRA-HIS]SR-APB (37.5 ± 9.3 ms vs. 18.4 ± 15.4 ms, P < 0.01). Conclusions: The wide difference of the interatrial conduction time ,[HRA-DCS]SR-APB between SVC and RSPV tachycardias is a useful parameter to distinguish the two tachycardias and may avoid unnecessary atrial transseptal puncture. [source]


Aging-Related Increase to Inducible Atrial Fibrillation in the Rat Model

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 8 2002
HIDEKI HAYASHI M.D.
Aging and Atrial Fibrillation.Introduction: Aging is associated with atrial interstitial fibrosis and increased incidence of atrial fibrillation (AF). We hypothesized that aged rats are suitable for study of aging-related AF and that partial atrial cellular uncoupling induced with heptanol in young rats mimics aging-related AF. Methods and Results: Interatrial conduction time and atrial response to burst atrial pacing were evaluated in 11 young (2,3 months) and 12 old (22,24 months) male rats (Fisher 344) in the Langendorff-perfused setting. At baseline, sustained (>30 sec) atrial tachycardia (AT) and AF were induced in 10 of 12 and in 7 of 12 old rats, respectively. No such arrhythmias could be induced in the young rats. Old rats had significantly (P < 0.01) longer interatrial conduction time and P wave durations than the young rats. Burst pacing failed to induce AT and AF in all 11 young rats studied. The effects of heptanol 2 to 10 ,M were studied in both groups. Heptanol 2 to 5 ,M promoted inducible AT in all 5 young rats studied; however, when its concentration was raised to 10 ,M, AT could no longer be induced in any of the 5 young rats. No AF could be induced in any of the 5 young rats at heptanol concentrations of 2 to 10 ,M. In the old rats, AF could still be induced during perfusion of 2 ,M heptanol. However, when its concentration was raised to 5 and 10 ,M, AF could not be induced in any of the 6 old rats studied. Optical mapping using a potentiometric dye showed a periodic single wavefront of activation during AT in both groups and 2 to 4 independent wavefronts propagating in different directions during AF in the old rats. Histology revealed a significant increase in interstitial atrial fibrosis (P < 0.01), atrial cell size (P < 0.05), and heart weight in old versus young rats. Fibrosis in the old rats was highly heterogeneous. Conclusion: The rat model is suitable for study of aging-related AF. Uniform partial atrial cellular uncoupling with heptanol perfusion in the young rats, although promoting inducible AT, does not mimic aging-related AF. The results suggest that heterogeneous atrial interstitial fibrosis and atrial cell hypertrophy might contribute to the aging-related increase in atrial conduction slowing, conduction block, and inducible AF in the old rat model. [source]


Can Simple Doppler Measurements Estimate Interatrial Conduction Time?

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 1p2 2003
DRAGOS COZMA
COZMA, D., et al.: Can Simple Doppler Measurements Estimate Interatrial Conduction Time?Prolongation of the interatrial conduction time (ia-CT) is considered an important factor in the pathophysiology of atrial fibrillation (AF) and as a criterion to perform multisite atrial pacing. Measurement of ia-CT requires an electrophysiologic study. The aim of this study was to compare echocardiographic with electrophysiologic measurements to determine if they are correlated. Methods and Results: The study included 32 consecutive patients who underwent electrophysiologic studies. We measured ia-CT between the high right atrium and the distal coronary sinus. In all patients we measured P wave duration, left atrial diameter and area, and ia-CT by Doppler echocardiography was measured as the difference in time intervals between the QRS onset and the tricuspid A wave, and the QRS onset and the mitral A wave (DT). Ia-CT was statistically correlated with DT(r = 0.79, P < 0.0001), but not with P wave duration or left atrial dimensions. Conclusions: Measurement DT may be reliable to estimate ia-CT without invasive procedure. Accordingly, DT could be used as a simple selection criterion when considering patients for atrial resynchronization therapy. (PACE 2003; 26[Pt. II]:436,439) [source]


Clinical Significance of the Atrial Fibrillation Threshold in Patients with Paroxysmal Atrial Fibrillation

PACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 5 2001
KEIJI INOUE
INOUE, K., et al.: Clinical Significance of the Atrial Fibrillation Threshold in Patients with Paroxysmal Atrial Fibrillation. AF threshold and the other electrophysiological parameters were measured to quantify atrial vulnerability in patients with paroxysmal atrial fibrillation (PAF, n = 47), and those without AF (non-PAF, n = 25). Stimulations were delivered at the right atrial appendage with a basic cycle length of 500 ms. The PAF group had a significantly larger percentage of maximum atrial fragmentation (%MAF, non-PAF: mean ± SD = 149 ± 19%, PAF: 166 ± 26%, P = 0.009), fragmented atrial activity zone (FAZ, non-PAF: median 0 ms, interquartile range 0,20 ms, PAF: 20 ms, 10,40 ms, P = 0.008). Atrial fibrillation threshold (AF threshold, non-PAF: median 11 mA, interquartile range 6,21 mA, PAF: 5 mA, 3,6 mA, P < 0.001) was smaller in the PAF group than in the non-PAF group. Sensitivity, specificity, and positive predictive value of electrophysiological parameters were as follows, respectively: %MAF (cut off at 150%, 78%, 52%, 76%), FAZ (cut off at 20 ms, 47%, 84%, 85%), AF threshold (cut off at 10 mA, 94%, 60%, 81%). There were no statistically significant differences between the non-PAF and PAF groups in the other parameters (effective refractory period, interatrial conduction time, maximum conduction delay, conduction delay zone, repetitive atrial firing zone, wavelength index), that were not specific for PAF. In conclusion, the AF threshold could be a useful indicator to evaluate atrial vulnerability in patients with AF. [source]


P-Wave Dispersion: A Novel Predictor of Paroxysmal Atrial Fibrillation

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 2 2001
Polychronis E. Dilaveris M.D.
Background: The prolongation of intraatrial and interatrial conduction time and the inhomogeneous propagation of sinus impulses are well known electrophysiologic characteristics in patients with paroxysmal atrial fibrillation (AF). Previous studies have demonstrated that individuals with a clinical history of paroxysmal AF show a significantly increased P-wave duration in 12-lead surface electrocardiograms (ECG) and signal-averaged ECG recordings. Methods: The inhomogeneous and discontinuous atrial conduction in patients with paroxysmal AF has recently been studied with a new ECG index, P-wave dispersion. P-wave dispersion is defined as the difference between the longest and the shortest P-wave duration recorded from multiple different surface ECG leads. Up to now the most extensive clinical evaluation of P-wave dispersion has been performed in the assessment of the risk for AF in patients without apparent heart disease, in hypertensives, in patients with coronary artery disease and in patients undergoing coronary artery bypass surgery. P-wave dispersion has proven to be a sensitive and specific ECG predictor of AF in the various clinical settings. However, no electrophysiologic study has proven up to now the suspected relationship between the dispersion in the atrial conduction times and P-wave dispersion. The methodology used for the calculation of P-wave dispersion is not standardized and more efforts to improve the reliability and reproducibility of P-wave dispersion measurements are needed. Conclusions: P-wave dispersion constitutes a recent contribution to the field of noninvasive electrocardiology and seems to be quite promising in the field of AF prediction. A.N.E. 2001;6(2):159,165 [source]