Home About us Contact | |||
Interannual Differences (interannual + difference)
Selected AbstractsEcosystem CO2 exchange and plant biomass in the littoral zone of a boreal eutrophic lakeFRESHWATER BIOLOGY, Issue 8 2003T. Larmola Summary 1In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998,1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass. 2In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8,6.2 mol m,2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above-ground plant biomass, had a net CO2 loss of 1.1,7.1 mol m,2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment. 3Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes. [source] Variability in the spawning habitat of Pacific sardine (Sardinops sagax) off southern and central CaliforniaFISHERIES OCEANOGRAPHY, Issue 6 2003Ronald J. Lynn Abstract The spatial pattern of sardine spawning as revealed by the presence of sardine eggs is examined in relation to sea surface temperature (SST) and mean volume backscatter strength (MVBS) measured by a 150 kHz acoustic Doppler current profiler (ADCP) during four spring surveys off central and southern California in 1996,99. Studies in other regions have shown that MVBS provides an excellent measure of zooplankton distribution and density. Zooplankton biomass as measured by survey net tows correlates well with concurrently measured MVBS. The high along-track resolution of egg counts provided by the Continuous Underway Fish Egg Sampler (CUFES) is a good match to the ADCP-based data. Large interannual differences in the pattern and density of sardine eggs are clearly related to the concurrently observed patterns of surface temperature and MVBS. The strong spatial relationship between sardine eggs and MVBS is particularly evident because of the large contrast in zooplankton biomass between the 1998 El Niño and 1999 La Niña. The inshore distribution of sardine spawning appears to be limited by the low temperatures of freshly upwelled waters, although the value of the limiting temperature varies between years. Often there is an abrupt offshore decrease in MVBS that is coincident with the offshore boundary of sardine eggs. Possible reasons for this association of sardine eggs and high zooplankton biomass include an evolved strategy that promotes improved opportunity of an adequate food supply for subsequent larval development, and/or adult nutrient requirements for serial spawning. Hence, the distribution of these parameters can be used as an aid for delineating the boundaries of sardine spawning habitat. [source] Grazing exclusion as a conservation measure in a South Australian temperate native grasslandGRASSLAND SCIENCE, Issue 2 2009Nicholas J. Souter Abstract Many of South Australia's remnant temperate native grasslands are degraded by introduced livestock grazing. As a conservation measure, grazing was excluded from three 50 × 50 m exclosures in grazed native grassland. After 4 years, grazing removal had a noticeable effect on the grassland structure, increasing basal vegetation cover. Grazing removal had no significant effect on either native or exotic species richness, rather differences in richness changed as a result of interannual differences, such as the amount of rainfall that fell in the growing season. The percent cover of the native tussock grass Austrostipa spp. and the introduced annual grass Avena barbata, whilst fluctuating from year to year, both increased following the removal of grazing. Multivariate analyses showed that whilst only interannual differences affected community taxon richness, changes in structure were affected by the interaction between grazing treatment and year. Excluding livestock from a degraded grassland resulted in limited recovery and restoration of these endangered plant associations will require active rehabilitation efforts. [source] The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in Northeast SpainINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 11 2006Sergio M. Vicente-Serrano Abstract This paper analyses the spatial and temporal variability of winter droughts in a semi-arid geographic gradient in Northeast Spain, from the Pyrenees in the north to the Mediterranean coastland in the south. Droughts that occurred between 1952 and 1999 were analysed by means of the Standardised Precipitation Index (SPI). The influence of the weather-type frequency and of the general North Atlantic atmospheric circulation patterns was analysed. The results indicate that winter droughts show an important spatial variability in the study area, differentiating three well-defined patterns. These correspond to the Pyrenees, the centre of the Ebro Valley, and the Mediterranean coastland. General negative trends in winter SPI have been found, which are indicative of the increase in winter drought conditions in the study area. Nevertheless, important spatial differences have also been recorded. Dominant north,south gradients in the influence of weather types are shown. Moreover, the negative trends in winter-SPI values agree with the negative trend in the frequency of the weather types prone to cause precipitation, such as the C, SW and W weather types and the increase in the frequency of A weather types. Nevertheless, in the Mediterranean coastland, the positive trend in SPI values agrees with the increase in the frequency of weather types of the east (E, SE), which are prone to cause precipitation in this area. Interannual variations in the frequency of the different weather types have been highly determined by different general atmospheric circulation patterns, mainly the North Atlantic Oscillation (NAO). Nevertheless, the correlation between the time series of weather-type frequency and the winter SPI is higher than that found between the SPI and the NAO. Thus, although the interannual NAO variability explains a high percentage of the interannual differences in the frequency of different weather types, it is not sufficient to explain the spatial and temporal variability of droughts, which respond better to atmospheric variability at more detailed (synoptic) spatial scales. Copyright © 2006 Royal Meteorological Society. [source] |