Interaction Liquid Chromatography (interaction + liquid_chromatography)

Distribution by Scientific Domains

Kinds of Interaction Liquid Chromatography

  • hydrophilic interaction liquid chromatography


  • Selected Abstracts


    Direct injection horse-urine analysis for the quantification and confirmation of threshold substances for doping control.

    DRUG TESTING AND ANALYSIS, Issue 8 2009

    Abstract Levodopa and dopamine have been abused as performance-altering substances in horse racing. Urinary 3-methoxytyramine is used as an indicator of dopaminergic manipulation resulting from dopamine or levodopa administration and is prohibited with a urinary threshold of 4 µg mL,1 (free and conjugated). A simple liquid chromatographic (LC)/mass spectrometric (MS) (LCMS) method was developed and validated for the quantification and identification of 3-methoxytyramine in equine urine. Sample preparation involved enzymatic hydrolysis and protein precipitation. Hydrophilic interaction liquid chromatography (HILIC) was selected as a separation technique that allows effective retention of polar substances like 3-methoxytyramine and efficient separation from matrix compounds. Electrospray ionization (ESI) in positive mode with product ion scan mode was chosen for the detection of the analytes. Quantification of 3-methoxytyramine was performed with fragmentation at low collision energy, resulting in one product ion, while a second run at high collision energy was performed for confirmation (at least three abundant ions). Studies on matrix effects showed ion suppression depending on the horse urine used. To overcome the variability of the results originating from the matrix effects, isotopic labelled internal standard was used and linear regression calibration methodology was applied for the quantitative determination of the analyte. The tested linear range was 1,20 µg mL,1. The relative standard deviations of intra- and inter- assay analysis of 3-methoxytyramine in horse urine were lower than 4.2% and 3.2%, respectively. Overall accuracy (relative percentage error) was less than 6.2%. The method was applied to case samples, demonstrating simplicity, accuracy and selectivity. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Simultaneous determination of melamine and related compounds by hydrophilic interaction liquid chromatography,electrospray mass spectrometry

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 17-18 2010
    Jingen Xia
    Abstract A hydrophilic interaction liquid chromatography coupled to ESI-MS (HILIC/ESI-MS) method for the simultaneous determination of melamine and related compounds, i.e. ammeline, ammelide and cyanuric acid in foods was developed and validated. The separation was accomplished on a Venusil HILIC column with a mobile phase of acetonitrile + 10,mM ammonium formate buffer solution at pH 3.5 (88:12, v/v) under isocratic elution mode. For the detection of the targets, the ESI probe worked in the positive and negative switching mode. For each compound, three ions were selected as qualitative ions to obtain high specificity, and the most abundant ion of each compound was selected for quantification to obtain high sensitivity. The target compounds were quantified using SIM with 15N3-melamine and 13C3-cyanuric acid being used as an internal standards in the positive and negative modes, respectively. Compared with RP separation mode, HILIC has merits such as high separation and anti-interference efficiency. The method validation including linearity, LOD, LOQ, precision and recovery proved that the method has merits such high sensitivity, specificity and simplicity versus the other methods reported in the literature. [source]


    Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 10 2010
    Péter Horvatovich
    Abstract Multidimensional chromatography coupled to mass spectrometry (LCn -MS) provides more separation power and an extended measured dynamic concentration range to analyse complex proteomics samples than one dimensional liquid chromatography coupled to mass spectrometry (1D-LC-MS). This review gives an overview of the most important aspects of LCn -MS with respect to optimizing peak capacity and evaluate orthogonality. We review recent developments in LCn -MS to analyse proteomics samples from the analyst point of view and give an overview over methods and future developments to process LCn -MS data for comprehensive differential protein expression profiling. Examples from our research, such as combining protein fractionation using high temperature reverse phase (RP) columns followed by analysis of the trypsin-digested fractions by RP LC-MS, serve to highlight possibilities and shortcomings of present-day approaches. Other LCn -MS systems that have been used to analyse highly complex shotgun proteomic samples, such as the combination of RP columns using low and high pH eluents or the combination of hydrophilic interaction liquid chromatography (HILIC) with RP-MS is discussed in detail. [source]


    Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversed-phase retention mechanism for polar compounds

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 15-16 2009
    í Urban
    Abstract Monolithic columns for capillary hydrophilic interaction liquid chromatography (HILIC) were prepared in fused-silica capillaries by radical co-polymerization of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide and ethylene dimethacrylate in various binary and ternary porogen solvent mixtures with azobisisobutyronitrile as the initiator of the polymerization reaction. Columns showed mixed separation modes: reversed-phase (RP) in water-rich mobile phases and HILIC at high concentrations of acetonitrile (>60,80%) in aqueous,organic mobile phases. A continuous change in retention was observed at increasing concentration of water in acetonitrile, giving rise to characteristic U-turn plots of retention factors versus the concentration of water in the mobile phase, with minima corresponding to the transition between the mechanisms controlling the retention. The selectivity of organic polymer monolithic columns for HILIC separations can be varied by adjusting the concentration of sulfobetaine monomer and the composition of the porogen solvent in the polymerization mixture. Under HILIC conditions, the monolithic capillary sulfobetaine columns show separation selectivities for polar phenolic acids similar to those of a commercial silica-based sulfobetaine ZIC-HILIC column, which, however, has limited selectivity in the RP mode due to lower retention. [source]


    Separation with zwitterionic hydrophilic interaction liquid chromatography improves protein identification by matrix-assisted laser desorption/ionization-based proteomic analysis

    BIOMEDICAL CHROMATOGRAPHY, Issue 6 2009
    Atsushi Intoh
    Abstract Comprehensive proteomic analyses necessitate efficient separation of peptide mixtures for the subsequent identification of proteins by mass spectrometry (MS). However, digestion of proteins extracted from cells and tissues often yields complex peptide mixtures that confound direct comprehensive MS analysis. This study investigated a zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) technique for the peptide separation step, which was verified by subsequent MS analysis. Human serum albumin (HSA) was the model protein used for this analysis. HSA was digested with trypsin and resolved by ZIC-HILIC or conventional strong cation exchange (SCX) prior to MS analysis for peptide identification. Separation with ZIC-HILIC significantly improved the identification of HSA peptides over SCX chromatography. Detailed analyses of the identified peptides revealed that the ZIC-HILIC has better peptide fractionation ability. We further demonstrated that ZIC-HILIC is useful for quantitatively surveying cell surface markers specifically expressed in undifferentiated embryonic stem cells. These results suggested the value of ZIC-HILIC as a novel and efficient separation method for comprehensive and quantitative proteomic analyses. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Cross-linked agarose for separation of low molecular weight natural products in hydrophilic interaction liquid chromatography

    BIOTECHNOLOGY JOURNAL, Issue 5 2010
    Tianwei Tan
    Abstract Following its market introduction in 1982, the cross-linked 12% agarose gel media Superose 12 has become widely known as a tool for size exclusion chromatography of proteins and other biological macromolecules. In this review it is shown that, when appropriate mobile phases are used, Superose possesses adsorption properties similar to that of traditional media for hydrophilic interaction liquid chromatography (HILIC). This is illustrated by the separation and purification of low molecular weight compounds such as polyphenols including active components of traditional Chinese medicinal herbs and green tea. Structural features of the cross-linked agarose that likely cause the observed adsorption effects are discussed aswell. These are identified as being primarily ether bonds acting as strong hydrogen bond acceptors as well as hydrophobic residues originating from the cross-linking reagents. [source]