Intestinal Barrier Function (intestinal + barrier_function)

Distribution by Scientific Domains


Selected Abstracts


Selective induction of mucin-3 by hypoxia in intestinal epithelia

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006
Nancy A. Louis
Abstract Epithelial cells line mucosal surfaces (e.g., lung, intestine) and critically function as a semipermeable barrier to the outside world. Mucosal organs are highly vascular with extensive metabolic demands, and for this reason, are particularly susceptible to diminished blood flow and resultant tissue hypoxia. Here, we pursue the hypothesis that intestinal barrier function is regulated in a protective manner by hypoxia responsive genes. We demonstrate by PCR confirmation of microarray data and by avidin blotting of immunoprecipitated human Mucin 3 (MUC3), that surface MUC3 expression is induced in T84 intestinal epithelial cells following exposure to hypoxia. MUC3 RNA is minimally detectable while surface protein expression is absent under baseline normoxic conditions. There is a robust induction in both the mRNA (first evident by 8 h) and protein expression, first observed and maximally expressed following 24 h hypoxia. This is followed by a subsequent decline in protein expression, which remains well above baseline at 48 h of hypoxia. Further, we demonstrate that this induction of MUC3 protein is associated with a transient increase in the barrier restorative peptide, intestinal trefoil factor (ITF). ITF not only colocalizes with MUC3, by confocal microscopy, to the apical surface of T84 cells following exposure to hypoxia, but is also found, by co-immunoprecipitation, to be physically associated with MUC3, following 24 h of hypoxia. In exploration of the mechanism of hypoxic regulation of mucin 3 expression, we demonstrated by luciferase assay that the full-length promoter for mouse Mucin 3 (Muc3) is hypoxia-responsive with a 5.08,±,1.76-fold induction following 24 h of hypoxia. Furthermore, analysis of both the human (MUC3A) and mouse (Muc3) promoters revealed potential HIF-1 binding sites which were shown by chromatin immunoprecipitation to bind the pivotal hypoxia-regulating transcription factor HIF-1,. Taken together, these studies implicate the HIF-1, mediated hypoxic induced expression of mucin 3 and associated ITF in the maintenance of intestinal barrier function under hypoxic conditions. J. Cell. Biochem. 99: 1616,1627, 2006. © 2006 Wiley-Liss, Inc. [source]


The intestinal barrier and its regulation by neuroimmune factors

NEUROGASTROENTEROLOGY & MOTILITY, Issue 7 2010
å. v. Keita
Abstract Background, The ability to control uptake across the mucosa and protect from damage of harmful substances from the lumen is defined as intestinal barrier function. A disturbed barrier dysfunction has been described in many human diseases and animal models, for example, inflammatory bowel disease, irritable bowel syndrome, and intestinal hypersensitivity. In most diseases and models, alterations are seen both of the paracellular pathway, via the tight junctions, and of the transcellular routes, via different types of endocytosis. Recent studies of pathogenic mechanisms have demonstrated the important role of neuroimmune interaction with the epithelial cells in the regulation of barrier function. Neural impulses from extrinsic vagal and/or sympathetic efferent fibers or intrinsic enteric nerves influence mucosal barrier function via direct effects on epithelial cells or via interaction with immune cells. For example, by nerve-mediated activation by corticotropin-releasing hormone or cholinergic pathways, mucosal mast cells release a range of mediators with effects on transcellular, and/or paracellular permeability (for example, tryptase, TNF-,, nerve growth factor, and interleukins). Purpose, In this review, we discuss current physiological and pathophysiological aspects of the intestinal barrier and, in particular, its regulation by neuroimmune factors. [source]


Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A

CELLULAR MICROBIOLOGY, Issue 12 2009
Janett Schoentaube
Summary Clostridium difficile toxin A and B (TcdA/TcdB) are glucosyltransferases that glucosylate GTPases of the Rho family. The epidermal growth factor (EGF) positively modulates C. difficile toxin-induced disturbance of the intestinal barrier function by an unknown mechanism. We found that EGF-treated CaCo-2 monolayers were less susceptible to TcdA-catalysed glucosylation of Rac1 but not of RhoA, which correlated with phosphorylation of Rac1 at Ser-71. Phospho-Rac1/phospho-Cdc42 (Ser-71) still bound to the PAK-CRIB domain indicating an active state. A more detailed characterization of phospho-Rac1 was performed using the phosphomimetic mutant Rac1 S71E. Ectopic expression of Rac1 S71E induced a specific phenotype of cells showing an increase in filopodial structures that were also induced by EGF. Rac1 S71E (and Cdc42 S71E) but not Rac1 S71A was at least fivefold weaker substrate for TcdA-catalysed glucosylation compared with wild type Rac1. The protective effect was checked in transfection experiments where Rac1 S71E and, to a lesser extent, Cdc42 S71E reduced the TcdA-induced cytopathic effect. Thus, Ser-71 phosphorylation of Rac1 might be interesting for modulation of microbial pathogenesis where Rho GTPases, especially Rac1 and Cdc42, are involved. In addition, this is the first description of a specific functional outcome of Rac1 phosphorylation at Ser-71. [source]


Intestinal permeability and irritable bowel syndrome

NEUROGASTROENTEROLOGY & MOTILITY, Issue 7 2007
M. Camilleri
Abstract, Based on a systematic PubMed search, this short review addresses why intestinal permeability may be important in the pathobiology of irritable bowel syndrome (IBS), the evidence of abnormal permeability in patients with IBS, and the pros and cons of the different probe molecules available to assess intestinal permeability. While a subgroup of patients with IBS appears to have evidence of increased intestinal permeability, improvements in the methods and validation are key to further research in this field in order to better understand intestinal barrier functions in IBS. [source]


Probiotic lactobacilli and VSL#3 induce enterocyte ,-defensin 2

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2008
M. Schlee
Summary Recent evidence suggests that probiotic bacteria may stabilize gut barrier function via induction of anti-microbial peptides such as defensins. This study aimed to elucidate the induction mechanism of the human beta defensin-2 (hBD-2) gene by different probiotic lactobacillus strains. The expression of hBD-2 mRNA peaked at 6 h of incubation upon treatment of Caco-2 cells and increased with higher dosage of various probiotic bacteria. Deletion of nuclear factor (NF)-,B and activator protein-1 (AP-1) binding sites on the hBD-2 promoter resulted in a complete abrogation of promoter activation by probiotics. As revealed by the use of specific mitogen-activated protein kinase (MAPK) inhibitors the hBD-2 induction was dependent on the MAPK extracellular regulated kinase (ERK 1/2), p38 and c-Jun N-terminal kinase (JNK), although to varying degrees. Several Lactobacillus strains and VSL#3, a probiotic cocktail of four lactobacilli, three bifidum and one streptococcus species, induced the secretion of the hBD-2 peptide into the culture media as shown by enzyme-linked immunosorbent assay (ELISA). Thus, the present study suggests that lactobacilli and the VSL#3 bacterial mixture strengthen intestinal barrier functions through the up-regulation of hBD-2 via induction of proinflammatory pathways including NF-,B and AP-1 as well as MAPKs. [source]