Integrated Response (integrate + response)

Distribution by Scientific Domains

Selected Abstracts

Common infections in diabetes: pathogenesis, management and relationship to glycaemic control

Anton Y. Peleg
Abstract Specific defects in innate and adaptive immune function have been identified in diabetic patients in a range of in vitro studies. However, the relevance of these findings to the integrated response to infection in vivo remains unclear, especially in patients with good glycaemic control. Vaccine efficacy seems adequate in most diabetic patients, but those with type 1 diabetes and high glycosylated haemoglobin levels are most likely to exhibit hypo-responsiveness. While particular infections are closely associated with diabetes, this is usually in the context of extreme metabolic disturbances such as ketoacidosis. The link between glycaemic control and the risk of common community-acquired infections is less well established but could be clarified if infection data from large community-based observational or intervention studies were available. The relationship between hospital-acquired infections and diabetes is well recognized, particularly among post-operative cardiac and critically ill surgical patients in whom intensive insulin therapy improves clinical outcome independent of glycaemia. Nevertheless, further research is needed to improve our understanding of the role of diabetes and glycaemic control in the pathogenesis and management of community- and hospital-acquired infections. Copyright © 2006 John Wiley & Sons, Ltd. [source]

Life-history strategies in freshwater macroinvertebrates

Summary 1Explaining spatial and temporal differences in species assemblages is a central aim of ecology. It requires a sound understanding of the causal mechanisms underlying the relationship of species with their environment. A species trait is widely acknowledged to be the key that links pattern and process, although the enormous variety of traits hampers generalization about which combination of traits are adaptive in a particular environment. 2In three steps, we used species traits to match species and environment, and chose lentic freshwater ecosystems to illustrate our approach. We first identified key environmental factors and selected the species traits that enable the organism to deal with them. Secondly, we investigated how investments in these traits are related (e.g. through trade-offs). Thirdly, we outlined 13 life-history strategies, based on biological species traits, their interrelations known from life-history theory and their functional implications. 3Species traits and environmental conditions are connected through life-history strategies, with different strategies representing different solutions to particular ecological problems. In addition, strategies may present an integrated response to the environment as they are based on many different traits and their interrelationships. The presence and abundance of (species exhibiting) different life-history strategies in a location may therefore give direct information about how a particular environment is experienced by the species present. 4Life-history strategies can be used to (i) explain differences in species assemblages either between locations or in different periods; (ii) compare waterbodies separated by large geographical distances, which may comprise different regional species pools or span species distribution areas and (iii) reduce often very complex, biodiverse assemblages into a few meaningful, easily interpretable relationships. [source]

Root dynamics and global change: seeking an ecosystem perspective

Changes in the production and turnover of roots in forests and grasslands in response to rising atmospheric CO2 concentrations, elevated temperatures, altered precipitation, or nitrogen deposition could be a key link between plant responses and longer-term changes in soil organic matter and ecosystem carbon balance. Here we summarize the experimental observations, ideas, and new hypotheses developed in this area in the rest of this volume. Three central questions are posed. Do elevated atmospheric CO2, nitrogen deposition, and climatic change alter the dynamics of root production and mortality? What are the consequences of root responses to plant physiological processes? What are the implications of root dynamics to soil microbial communities and the fate of carbon in soil? Ecosystem-level observations of root production and mortality in response to global change parameters are just starting to emerge. The challenge to root biologists is to overcome the profound methodological and analytical problems and assemble a more comprehensive data set with sufficient ancillary data that differences between ecosystems can be explained. The assemblage of information reported herein on global patterns of root turnover, basic root biology that controls responses to environmental variables, and new observations of root and associated microbial responses to atmospheric and climatic change helps to sharpen our questions and stimulate new research approaches. New hypotheses have been developed to explain why responses of root turnover might differ in contrasting systems, how carbon allocation to roots is controlled, and how species differences in root chemistry might explain the ultimate fate of carbon in soil. These hypotheses and the enthusiasm for pursuing them are based on the firm belief that a deeper understanding of root dynamics is critical to describing the integrated response of ecosystems to global change. [source]

Plant Aquaporins: New Perspectives on Water and Nutrient Uptake in Saline Environment

PLANT BIOLOGY, Issue 5 2006
M. C. del Martínez-Ballesta
Abstract: The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available. [source]

Early processing in the human lateral occipital complex is highly responsive to illusory contours but not to salient regions

Marina Shpaner
Abstract Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, whereas later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli probably reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not the lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex. [source]

Mast cells and their role in the neuro-immune-endocrine axis

J. Bienenstock
It has become clear that the immune and nervous systems communicate constantly to maintain homeostasis and a coordinated and continuing adaptive response to an ever-changing environment. Evidence from mast cell nerve communication, as an example of this interaction, has been obtained in a variety of tissues and circumstances, most especially in the intestine and skin. Bidirectional communication has been shown in vivo, ex vivo, in vitro and in coculture experiments involving the two cell types. Examples will be given of these various situations and involve normal physiological situations and those involved in response to infection and inflammation as well as in response to ultraviolet light. More recent examples of the importance of mast cells in the regulation of central nervous activity including the secretion of hormones by the pituitary gland, and thereby the regulation of the HPA axis as well as involvement in behavioural change will be addressed. Through its potential communication with the nervous system, the mast cell can be regarded as a sentinel cell or receptor, especially located at surfaces exposed to the environment, which specifically and non-specifically react to molecules and substances, foreign to the organism, so as to help orchestrate the complex and integrated responses required to maintain homeostasis. [source]