Androgen Regulation (androgen + regulation)

Distribution by Scientific Domains


Selected Abstracts


Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG

THE PROSTATE, Issue 9 2006
Mengqian Chen
Abstract BACKGROUND Prostasin is downregulated in hormone-refractory prostate cancers (HRPC). The mechanisms by which androgens regulate prostasin expression are unclear. METHODS LNCaP cells were treated with dihydrotestosterone (DHT), and mRNA expression of prostasin, SREBPs, SNAIL, and SLUG was examined by real-time PCR following reverse transcription. A human prostasin promoter was evaluated in HEK-293 cells co-transfected with transcription factor cDNAs. Regulation of endogenous prostasin expression by transfected SREBP-2 or SLUG was evaluated. Expression of SNAIL and SLUG mRNA in DU-145 cells treated with epidermal growth factor (EGF) was examined. RESULTS Prostasin mRNA expression in LNCaP cells was not responsive to DHT treatment. DHT marginally upregulated mRNA expression of SREBP-1c, SREBP-2, and SNAIL, but not SREBP-1a, while dramatically increased SLUG mRNA expression, in a dose-dependent manner. Co-transfection of prostasin promoter and SREBP cDNA in HEK-293 cells resulted in stimulation of promoter activity at ,twofold by SREBP-1c, and up to sixfold by SREBP-2; while co-transfection with SNAIL or SLUG cDNA resulted in repression of promoter activity to 43% or 59%, respectively. Co-transfection of the SLUG cDNA negated SREBP-2's stimulation of prostasin promoter in a dose-dependent manner. Transfection of an SREBP-2 cDNA in HEK-293 and DU-145 resulted in upregulation of prostasin while transfection of a SLUG cDNA in LNCaP repressed prostasin expression. EGF upregulated SNAIL and SLUG mRNA in DU-145. CONCLUSIONS DHT regulates prostasin expression in prostate cells via SREBP stimulation and SLUG repression of prostasin promoter. SLUG is upregulated by DHT and EGF, providing a molecular mechanism by which epithelial cell-specific genes are silenced during prostate cancer development and progression. Prostate 66: 911,920, 2006. © 2006 Wiley-Liss, Inc. [source]


Vitamin D and androgen regulation of prostatic growth

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2003
Eddy S. Leman
Abstract Vitamin D has been reported to inhibit the growth of prostate cancer cells and model systems. In this study, we examined the interaction between 1,25-dihydroxyvitamin D3 (1,25 D) in the presence or absence of endogenous testosterone on the growth and development of the adult rat prostate. Male Sprague,Dawley rats (165 days old) were either kept intact or castrated. Seven days after castration, the rats were treated with vehicle (control) or 1,25 D for 3 weeks and then sacrificed. Both ventral and dorsal lateral prostates were harvested; whole tissue lysates were collected and AR and VDR protein levels were analyzed by immunoblot analyses. Administration of 1,25 D in the intact animals decreased the prostatic size by 40%, compared to control animals, whereas 1,25 D did not influence the size of the prostate in castrated rats. 1,25 D administration in intact groups also increased both the AR and VDR protein levels by ,twofold, whereas in castrated groups, 1,25 D only increased the AR protein level by 1.5,2.5-fold. 1,25 D in the presence of endogenous testosterone inhibits prostatic growth, whereas 1,25 D in the absence of endogenous testosterone does not affect prostatic growth. The growth inhibitory activity of 1,25 D in the presence of testosterone may be mediated through the ligand activated AR and VDR pathways. These studies may reveal important information about the potential efficacy of 1,25 D as well as hormonal status in understanding the development of prostate diseases. J. Cell. Biochem. 90: 138,147, 2003. © 2003 Wiley-Liss, Inc. [source]


ORIGINAL RESEARCH: Phosphodiesterase Type 5 Regulation in the Penile Corpora Cavernosa

THE JOURNAL OF SEXUAL MEDICINE, Issue S3 2009
Ching-Shwun Lin PhD
ABSTRACT Introduction., Penile detumescence depends on the hydrolysis of cyclic guanosine monophosphate (cGMP) by phosphodiesterase type 5 (PDE5). It is hoped that a review of publications relevant to the regulation of PDE5 in the penis will be helpful to both scientists and clinicians who are interested in the sciences of erectile function/dysfunction. Aims., The aim of this article is to comprehensively review the mechanisms by which PDE5 activity and expression in the penis are regulated. All published studies relevant to PDE5 regulation in the penis or penile cells will be reviewed. Methods., Entrez (PubMed) was used to search for publications relevant to the topics of this review. Keywords used in the searches included vascular, cavernous, penis, smooth muscle, signaling molecules, erection, priapism, and PDE5. Articles that are dedicated to the study of erectile function/dysfunction were prioritized for citation. Results., Regulation of PDE5 can occur at both protein and gene levels. At protein level, PDE5 is activated by phosphorylation and/or allosteric cGMP binding. Deactivation is carried out by protein phosphatase 1 and thus linked to the Rho-kinase signaling pathway. Cleavage of PDE5 into an inactive form has been shown as carried out by caspase-3. At the gene level, PDE5 expression is regulated at two alternative promoters, PDE5A and PDE5A2, both of which are positively regulated by cyclic adenosine monophosphate and cGMP. Downregulation of PDE5 has been observed in the penis of castrated animals; however, proof of androgen regulation of PDE5 gene requires examination of the smooth muscle content. Hyperoxia and hypoxia, respectively, regulate PDE5 expression positively and negatively. Hypoxic downregulation of PDE5 is a possible mechanism for the development of priapism. Conclusions., PDE5 can be regulated at protein and gene levels. In the penis, changes of PDE5 activity have been linked to its phosphorylation status, and downregulation of PDE5 expression has been associated with hypoxia. Lin CS. PDE5 regulation in the penile corpora nervosa. J Sex Med 2009;6(suppl 3):203,209. [source]


Regulation of PSA secretion and survival signaling by calcium-independent phopholipase A2, in prostate cancer cells

THE PROSTATE, Issue 12 2009
Thomas M. Nicotera
Abstract BACKGROUND Serum prostate specific antigen (PSA) levels in prostate cancer patients serve as a useful biomarker for diagnosing and monitoring prostate cancer. Recently, secreted PSA has been characterized as an autocrine survival factor through activation of Akt and induction of AR. In the normal prostate, PSA is secreted in the lumen of prostatic ducts to lyse proteins in the seminal coagulum. METHODS However, the mechanism for constitutive PSA secretion from benign prostate and its transport across the prostate-blood barrier into serum are unknown. Regulation of peptide secretion by iPLA2 -, has been reported in non-prostatic tissue and in prostate tissue iPLA2 -, is reported to be under androgen regulation. We investigated whether iPLA2 plays a role for in PSA secretion by comparing iPLA2 activity and expression in normal prostate epithelial RWPE-1 cells and in LNCaP prostate cancer cells. Expression of the two active iPLA2 -, mRNA splice variants, LH-iPLA2 and SH-iPLA2, were increased and the inhibitory ankyrin-iPLA2 isoform was markedly reduced in LNCaP cells as compared to normal prostate epithelial RWPE-1 cells. RESULTS These changes are consistent with a higher enzymatic activity in LNCaP cells. The iPLA2 -,-specific inhibitor BEL inhibited PSA secretion and induced apoptosis in LNCaP cells. iPLA2 knockdown using SiRNA inhibited PSA secretion, downregulated AR and induced apoptosis. Exogenous PSA suppressed BEL-induced apoptosis and neutralizing anti-PSA antibody blocked the survival effect of PSA. CONCLUSIONS These data indicate that iPLA2 -, participates in regulating PSA secretion and supports the concept that secreted PSA provides an autocrine survival function in LNCaP cells. Prostate 69:1270,1280, 2009. © 2009 Wiley-Liss, Inc. [source]


Differential expression of c- erb B2/neu, epidermal growth factor receptor, cytokeratin 8, and the prostatic steroid-binding protein gene in rat ventral prostate during postnatal development

THE PROSTATE, Issue 3 2001
Louis L. Pisters
Abstract BACKGROUND The development and progression of prostate neoplasia may recapitulate the early developmental pattern of expression of genes in the prostate. The study of prostate development may, therefore, provide insights into the molecular mechanisms important in prostate neoplasia and reveal new markers. METHODS We compared postnatal expression of four genes: neu and epidermal growth factor receptor genes (EGFR), androgen-upregulated in the ventral prostate of adult rats (C-3), and androgen-repressed (CK8) in Sprague,Dawley rats. In situ hybridization was performed on prostate frozen sections collected on postnatal days 1, 5, 10, 15, 20, 30, and 60 from five rats per day. Staining intensities for antisense probes specific for each gene were determined relative to day 1 intensity. RESULTS Growth factor receptors including neu and EGFR may be coordinately regulated in the basal-cell population during prostate development. CK8 and C-3 show evidence of similar androgen regulation during development. CONCLUSIONS CK8 and C-3 have distinct patterns of expression in the postnatal period of development and these genes may be good markers of differentiation. Both neu and EGFR may be involved in androgen-independent growth of basal cell population in prostate. Prostate 47:164,171, 2001. © 2001 Wiley-Liss, Inc. [source]