Intact Males (intact + male)

Distribution by Scientific Domains


Selected Abstracts


Effect of metanotal secretion ingestion on oviposition in a tree cricket, Truljalia hibinonis (Orthoptera: Gryllidae)

ENTOMOLOGICAL SCIENCE, Issue 1 2004
Tomohiro ONO
Abstract The female Truljalia hibinonis ingests metanotal secretions of the male during copulation. The effect of ingestion on oviposition behavior was compared between three female groups: females that copulated once with an intact male (a male that had not been manipulated; M group); females that copulated once with a male from which most of the metanotal secretion had been removed (NO group); and females that copulated once with an intact male followed by being artificially supplied with metanotal secretion three times (MS group). There were no obvious differences in female fecundity across the three groups. However, within the MS group, intake of an optimal amount of metanotal secretion increased the number of eggs laid. This effect appeared quickly after ingestion and was most effective on the first bout (eggs laid during the first few days after copulation) after ingestion of the metanotal secretion. In contrast, the number of eggs laid had a negative correlation with the amount of metanotal secretion ingested when the amount exceeded the optimal in this experimental arrangement. [source]


Respiration and thermogenesis by cones of the Australian cycad Macrozamia machinii

FUNCTIONAL ECOLOGY, Issue 6 2004
R. S. SEYMOUR
Summary 1While cycads are often considered to be wind-pollinated, it is now clear that insects are pollen vectors in many species. This study addresses the role of thermogenesis in pollination biology of the dioecious cycad Macrozamia machinii P.I. Forster & D.L. Jones. 2The patterns of thermogenesis in intact male and female cones were assessed with thermometry and respirometry throughout the pollination period in the field. 3Thermogenic episodes in male cones occurred from about 17.00,00.00 h on successive evenings, in association with dehiscence of sporangia and presence of their pollinating weevils (Tranes sp.). 4Temperatures of the 167 g male cones rose ,6 °C above ambient, and mean rate of oxygen consumption peaked at 7·7 µmol s,1 (3·6 W). Regulation of male cone temperature was not evident, and thermogenesis of female cones was insignificant. 5Male cones probably heat to augment scent production and enhance weevil activity, including mating and egg-laying, but female cones may benefit from reduced visitation and freedom from damage by weevil larvae. Male cones may be sacrificial in providing the reward to the pollinators while the female cones are safeguarded. [source]


Quantitative analysis of pre- and postsynaptic sex differences in the nucleus accumbens

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 8 2010
Paul M. Forlano
Abstract The nucleus accumbens (NAc) plays a central role in motivation and reward. While there is ample evidence for sex differences in addiction-related behaviors, little is known about the neuroanatomical substrates that underlie these sexual dimorphisms. We investigated sex differences in synaptic connectivity of the NAc by evaluating pre- and postsynaptic measures in gonadally intact male and proestrous female rats. We used DiI labeling and confocal microscopy to measure dendritic spine density, spine head size, dendritic length, and branching of medium spiny neurons (MSNs) in the NAc, and quantitative immunofluorescence to measure glutamatergic innervation using pre- (vesicular glutamate transporter 1 and 2) and postsynaptic (postsynaptic density 95) markers, as well as dopaminergic innervation of the NAc. We also utilized electron microscopy to complement the above measures. Clear but subtle sex differences were identified, namely, in distal dendritic spine density and the proportion of large spines on MSNs, both of which are greater in females. Sex differences in spine density and spine head size are evident in both the core and shell subregions, but are stronger in the core. This study is the first demonstration of neuroanatomical sex differences in the NAc and provides evidence that structural differences in synaptic connectivity and glutamatergic input may contribute to behavioral sex differences in reward and addiction. J. Comp. Neurol. 518:1330,1348, 2010. © 2009 Wiley-Liss, Inc. [source]


Testosterone metabolites differentially maintain adult morphology in a sexually dimorphic neuromuscular system

DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2010
Tom Verhovshek
Abstract The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Androgens are necessary for the development of the SNB neuromuscular system, and in adulthood, continue to influence the morphology and function of the motoneurons and their target musculature. However, estrogens are also involved in the development of the SNB system, and are capable of maintaining function in adulthood. In this experiment, we assessed the ability of testosterone metabolites, estrogens and nonaromatizable androgens, to maintain neuromuscular morphology in adulthood. Motoneuron and muscle morphology was assessed in adult normal males, sham-castrated males, castrated males treated with testosterone, dihydrotestosterone, estradiol, or left untreated, and gonadally intact males treated with the 5,-reductase inhibitor finasteride or the aromatase inhibitor fadrozole. After 6 weeks of treatment, SNB motoneurons were retrogradely labeled with cholera toxin-HRP and reconstructed in three dimensions. Castration resulted in reductions in SNB target muscle size, soma size, and dendritic morphology. Testosterone treatment after castration maintained SNB soma size, dendritic morphology, and elevated target muscle size; dihydrotestosterone treatment also maintained SNB dendritic length, but was less effective than testosterone in maintaining both SNB soma size and target muscle weight. Treatment of intact males with finasteride or fadrozole did not alter the morphology of SNB motoneurons or their target muscles. In contrast, estradiol treatment was completely ineffective in preventing castration-induced atrophy of the SNB neuromuscular system. Together, these results suggest that the maintenance of adult motoneuron or muscle morphology is strictly mediated by androgens. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 206,221, 2010. [source]


Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, Arvicanthis niloticus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009
M. M. Mahoney
Abstract Diurnal and nocturnal animals differ with respect to the time of day at which the ovulatory surge in luteinizing hormone occurs. In some species this is regulated by the suprachiasmatic nucleus (SCN), the primary circadian clock, via cells that contain vasoactive intestinal polypeptide (VIP) and vasopressin (AVP). Here, we evaluated the hypothesis that chronotype differences in the timing of the luteinizing hormone surge are associated with rhythms in expression of the genes that encode these neuropeptides. Diurnal grass rats (Arvicanthis niloticus) were housed in a 12/12-h light,dark cycle and killed at one of six times of day (Zeitgeber time 1, 5, 9, 13, 17, 21; ZT 0 = lights-on). In-situ hybridization was used to compare levels of vip, avp and VIP receptor mRNA (vipr2) in the SCN of intact females, ovariectomized females, ovariectomized females given estradiol and intact males. We found a sex difference in vip rhythms with a peak occurring at ZT 13 in males and ZT 5 in intact females. In all groups avp mRNA rhythms peaked during the day, from ZT 5 to ZT 9, and had a trough in the dark at ZT 21. There was a modest rhythm and sex difference in the pattern of vipr2. Most importantly, the patterns of each of these SCN rhythms relative to the light,dark cycle resembled those seen in nocturnal rodents. Chronotype differences in timing of neuroendocrine events associated with ovulation are thus likely to be generated downstream of the SCN. [source]


Androgenic Regulation of Steroid Hormone Receptor mRNAs in the Brain of Whiptail Lizards

JOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2000
Godwin
Sex and species differences in androgenic regulation of steroid hormone receptor mRNAs were examined in the diencephalon of two species of whiptail lizards: Cnemidophorus inornatus is a sexual species and the direct evolutionary ancestor to Cnemidophorus uniparens, an all-female parthenogenetic species. Lizards were gonadectomized and treated with different doses of either aromatizable testosterone or nonaromatizable dihydrotestosterone. The relative abundances of androgen-, oestrogen-, and progesterone-receptor mRNAs were compared in various nuclei following in situ hybridization with homologous riboprobes. A diversity of patterns in androgenic regulation was observed, with effects differing according to brain region, the steroid-receptor mRNA being considered and, in some cases, between androgens. In the ancestral sexual species, intact males had lower androgen-receptor mRNA abundances than castrated, blank-implanted males in the medial preoptic area. Testosterone significantly decreased androgen-receptor mRNA abundance in the medial preoptic area of castrated males. Males had higher androgen-receptor mRNA levels in the preoptic area than females generally and neither the sexual or parthenogenetic females showed a decrease in androgen-receptor mRNA with androgen treatment. Both testosterone and dihydrotestosterone increased oestrogen-receptor mRNA abundance in the ventromedial hypothalamus of C. inornatus, but no sex differences in this effect were observed. Gonadectomy decreased, whereas androgen treatment increased, progesterone-receptor mRNA abundance in the ventromedial hypothalamus. There was a sex difference in this response to androgen in the sexual species, with males having greater amounts than females in this brain area. The parthenogenetic species exhibited a similar pattern to females of the sexual species, but the levels were higher overall, possibly because Cnemidophorus uniparens is triploid. The periventricular preoptic area showed a different pattern, with testosterone treatment increasing progesterone-receptor mRNA abundance in both sexes of the sexual species and in the parthenogenetic species, while dihydrotestosterone did not. The diversity of patterns in androgen effects indicates that gonadal sex, aromatization of androgen, and perhaps gene dosage all influence the expression of steroid-receptor mRNAs in the lizard brain. [source]


Sex Differences in Ethanol-Induced Hypothermia in Ethanol-Naïve and Ethanol-Dependent/Withdrawn Rats

ALCOHOLISM, Issue 1 2009
Anna N. Taylor
Background:, Human and animal findings indicate that males and females display major differences in risk for and consequences of alcohol abuse and alcoholism. These differences are in large part mediated by sex-specific hormonal environments. Gonadal and adrenal secretory products are known to modulate the neurobehavioral responses of ethanol (EtOH) dependence and withdrawal. However, the effects of these steroids on physiological adaptations, such as thermoregulation, are less well established. To study the role of sex-related hormones in mediating sex differences in the hypothermic response to acute challenge with EtOH, we compared the EtOH-induced hypothermic responses of EtOH-naïve male and female rats and EtOH-dependent (on the third day of withdrawal) male and female rats before (intact) and after depletion of all gonadal and adrenal steroids by gonadectomy (GDX) with or without adrenalectomy (ADX). Methods:, Intact and GDX male and female rats, with or without ADX, were fed an EtOH-containing liquid diet for 15 days while control (EtOH-naïve) rats were pairfed the isocaloric liquid diet without EtOH or fed normal rat chow and water. On the third day of withdrawal from the EtOH diet we tested the hypothermic response to EtOH challenge (1.5 g/kg BWt, ip). Blood alcohol content (BAC) and corticosterone (CORT) content were analyzed in a separate series of intact and GDX males and females with and without ADX in response to the EtOH challenge. Results:, Ethanol-induced hypothermia was significantly greater and its duration significantly longer in intact males than females when subjects were EtOH-naïve. EtOH-induced hypothermia was significantly greater in intact females than males by the third day of withdrawal from EtOH dependence. GDX in males significantly shortened the duration of the hypothermic response and tended to blunt EtOH-induced hypothermia while response duration was significantly extended by GDX in females that tended to enhance EtOH-hypothermia. EtOH-induced hypothermia was significantly enhanced and its duration significantly lengthened by combined GDX and ADX in EtOH-naïve and -withdrawn males and by combined GDX and ADX in EtOH-naïve but not EtOH-withdrawn females. These differential EtOH-induced hypothermic responses did not appear to be caused by differences in EtOH handling among the groups. The absence of adrenal activation by EtOH in the GDX,ADX males and females contributes to their enhanced EtOH-induced hypothermic responses. Conclusions:, These results implicate the direct and indirect effects of removal of gonadal and adrenal secretory products as mediators of the thermoregulatory actions of EtOH. [source]


Pharmacokinetics of boldenone and stanozolol and the results of quantification of anabolic and androgenic steroids in race horses and nonrace horses

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 2 2007
L. R. SOMA
Anabolic steroids (ABS) boldenone (BL; 1.1 mg/kg) and stanozolol (ST; 0.55 mg/kg) were administered i.m. to horses and the plasma samples collected up to 64 days. Anabolic steroids and androgenic steroids (ANS) in plasma were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The limit of detection of all analytes was 25 pg/mL. The median absorption (t1/2,) and elimination (t1/2e) half-lives for BL were 8.5 h and 123.0 h, respectively, and the area under the plasma concentration,time curve () was 274.8 ng·h/mL. The median t1/2e for ST was 82.1 h and the was 700.1 ng·h/mL. Peak mean () plasma concentrations (Cmax) for BL and ST were 1127.8 and 4118.2 pg/mL, respectively. Quantifiable concentrations of ABS and ANS were found in 61.7% of the 988 plasma samples tested from race tracks. In 17.3% of the plasma samples two or more ABS or ANS were quantifiable. Testosterone (TES) concentrations mean () in racing and nonracing intact males were 241.3 ± 61.3 and 490.4 ± 35.1 pg/mL, respectively. TES was not quantified in nonracing geldings and female horses, but was in racing females and geldings. Plasma concentrations of endogenous 19-nortestosterone (nandrolone; NA) from racing and nonracing males were 50.2 ± 5.5 and 71.8 ± 4.6 pg/mL, respectively. [source]