Home About us Contact | |||
Insoluble
Terms modified by Insoluble Selected AbstractsThe Immobilization of Rhodium-4-(diphenylphosphino)-2- (diphenylphosphinomethyl)-pyrrolidine (Rh-PPM) Complexes: A Systematic StudyADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 12-13 2006Benoît Pugin Abstract A modular toolbox for the immobilization of homogeneous catalysts to various supports is described. It consists of functionalized chiral diphosphines and three different linkers based on isocyanate chemistry and it is used to attach the 4-(diphenylphosphino)-2-(diphenylphosphinomethyl)-pyrrolidine (PPM) ligand to a large variety of soluble, swellable and non-swellable solid organic polymers and to silica gels. As model reaction the hydrogenation of acetamidocinnamic acid derivatives, catalyzed with high enantioselectivity was chosen. Besides information on the usefulness of a particular type of support for synthetic applications, the experiments were also designed to address the question how parameters such as solubility, swellability, cage or pore size and solvent affect the rate and enantioselectivity of an immobilized catalyst. Rhodium complexes of ligands attached to soluble polymers and inorganic supports achieved ees up to 95,% and turnover frequencies between 700 and 1400,h,1, very close to the values of the homogeneous Rh catalyst (ee 95,%, TOF 1320,h,1). Insoluble or strongly cross-linked organic polymers led to catalysts with lower enantioselectivity and activity. PPM ligands attached to water soluble dendrimer fragments allowed hydrogenation in water solution with ees up to 94,%, albeit with much lower activity compared to reactions in methanol with the homogeneous catalyst. [source] Type of dietary fibre (soluble versus insoluble) influences digestion, faeces characteristics and faecal waste production in Nile tilapia (Oreochromis niloticus L.)AQUACULTURE RESEARCH, Issue 12 2005Abdolsamad K Amirkolaie Abstract The physico-chemical properties of nutrients influence the physical characteristics of faeces and thus may affect waste removal efficiency. The aim of this study is to assess the effect of type of non-starch polysaccharide (NSP) on digesta viscosity, faeces recovery and nutrient digestibility in Nile tilapia. Insoluble (cellulose) and soluble (guar gum) NSPs were included separately and combined at a level of 8%, thereby formulating four experimental diets. The diets were assigned to 16 tanks with 35 fish each, with four replicates for each diet. Cellulose inclusion did not influence digesta viscosity, growth and digestibility of protein and starch and tended to increase faeces recovery (P=0.06). Guar gum inclusion increased digesta viscosity and reduced the growth and digestibility of protein, fat and starch (P<0.01). Faeces recovery was reduced by 42% in diets containing guar gum. There were interaction effects (P<0.05) between cellulose and guar gum for the growth and feed conversion ratio, indicating that cellulose alleviated the negative impact of guar gum. In conclusion, dietary soluble NSPs increase organic matter load in the culture system through a reduction in faeces recovery and nutrient digestibility, whereas insoluble NSPs improve the removal efficiency of particles by increasing faeces recovery. [source] Higher Soluble Amyloid , Concentration in Frontal Cortex of Young Adults than in Normal Elderly or Alzheimer's DiseaseBRAIN PATHOLOGY, Issue 4 2010Zoë Van Helmond Abstract Little is known about the relationship between soluble amyloid , (A,) and age. We have measured soluble and insoluble A, by enzyme-linked immunosorbent assay (ELISA) in post-mortem frontal cortex in normal brains (16,95 years) and AD. Insoluble A, increased with age, and was significantly higher in Alzheimer's disease (AD) than age-matched controls. However, levels of soluble A, declined with age and were significantly greater in younger adults than older adults with or without AD. In AD, insoluble : soluble A, ratio was much higher than in age-matched controls. The high levels of soluble A, in young adults included oligomeric species of A,1-42. These observations do not preclude A, oligomers as neurotoxic mediators of AD but suggest that if they are, the toxicity may be restricted to certain species (eg, ,-pleated protofibrillar species not detected by our assay) or takes decades to manifest. The dramatically increased insoluble : soluble A, in AD points to an altered dynamic equilibrium of A, in AD, reflecting both enhanced aggregation and continued overproduction or impaired removal of the soluble peptide in older age, when the concentration of this peptide should be declining. [source] Microfluidic tectonics platform: A colorimetric, disposable botulinum toxin enzyme-linked immunosorbent assay systemELECTROPHORESIS, Issue 10-11 2004Jaisree Moorthy Abstract A fabrication platform for realizing integrated microfluidic devices is discussed. The platform allows for creating specific microsystems for multistep assays in an ad hoc manner as the components that perform the assay steps can be created at any location inside the device via in situ fabrication. The platform was utilized to create a prototype microsystem for detecting botulinum neurotoxin directly from whole blood. Process steps such as sample preparation by filtration, mixing and incubation with reagents was carried out on the device. Various microfluidic components such as channel network, valves and porous filter were fabricated from prepolymer mixture consisting of monomer, cross-linker and a photoinitiator. For detection of the toxoid, biotinylated antibodies were immobilized on streptavidin-functionalized agarose gel beads. The gel beads were introduced into the device and were used as readouts. Enzymatic reaction between alkaline phosphatase (on secondary antibody) and substrate produced an insoluble, colored precipitate that coated the beads thus making the readout visible to the naked eye. Clinically relevant amounts of the toxin can be detected from whole blood using the portable enzyme-linked immunosorbent assay (ELISA) system. Multiple layers can be realized for effective space utilization and creating a three-dimensional (3-D) chaotic mixer. In addition, external materials such as membranes can be incorporated into the device as components. Individual components that were necessary to perform these steps were characterized, and their mutual compatibility is also discussed. [source] Predicting the toxicity of chromium in sedimentsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2004Walter J. Berry Abstract Chromium exists in sediments in two oxidation states: Cr(III), which is relatively insoluble and nontoxic, and Cr(VI), which is much more soluble and toxic. Chromium(VI) is thermodynamically unstable in anoxic sediments, and acid-volatile sulfide (AVS) is formed only in anoxic sediments; therefore sediments with measurable AVS concentrations should not contain toxic Cr(VI). If this hypothesis holds true, measuring AVS could form the basis for a theoretically based guideline for Cr in sediments. Ten-day water-only and spiked sediment toxicity tests with the amphipod Ampelisca abdita were performed with Cr(VI) and Cr(III), along with sediments collected from a site contaminated with high concentrations of Cr. In sediments where AVS exceeded analytical detection limits, Cr concentrations in interstitial water were very low (<100 ,g/L) and no significant toxicity to A. abdita was observed. In sediments in which AVS was not significantly greater than zero, Cr concentrations in interstitial waters increased significantly, with greater than 90% of the Cr present as Cr(VI), and mortality of A. abdita was elevated. These results demonstrate that measurements of AVS and interstitial water chromium can be useful in predicting the absence of acute effects from Cr contamination in sediments. [source] Metalloporphyrin solubility: A trigger for catalyzing reductive dechlorination of tetrachloroethyleneENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2004Ishai Dror Abstract Metalloporphyrins are well known for their electron-transfer roles in many natural redox systems. In addition, several metalloporphyrins and related tetrapyrrole macrocycles complexed with various core metals have been shown to catalyze the reductive dechlorination of certain organic compounds, thus demonstrating the potential for using naturally occurring metalloporphyrins to attenuate toxic and persistent chlorinated organic pollutants in the environment. However, despite the great interest in reductive dechlorination reactions and the wide variety of natural and synthetic porphyrins currently available, only soluble porphyrins, which comprise a small fraction of this particular family of organic macrocycles, have been used as electron-transfer shuttles in these reactions. Results from the present study clearly demonstrate that metalloporphyrin solubility is a key factor in their ability to catalyze the reductive dechlorination of tetrachloroethylene and its daughter compounds. Additionally, we show that certain insoluble and nonreactive metalloporphyrins can be activated as catalysts merely by changing solution conditions to bring about their dissolution. Furthermore, once a metalloporphyrin is fully dissolved and activated, tetrachloroethylene transformation proceeds rapidly, giving nonchlorinated and less toxic alkenes as the major reaction products. Results from the present study suggest that if the right environmental conditions exist or can be created, specific metalloporphyrins may provide a solution for cleaning up sites that are contaminated with chlorinated organic pollutants. [source] In Situ Synthesis, Characterization of SiPMo-X, and Different Catalytic Properties of SiPMo-X and SiPW-XEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2006Chunfeng Shi Abstract SBA-15 frameworks with encapsulated Keggin type heteropolyacids (HPAs) were synthesized in situ under strongly acidic conditions (pH,<,0). During the hydrolysis of tetraethyl orthosilicate (TEOS), a P- and a Mo source were added into the initial sol,gel system to form Keggin type HPAs. The texture of the final products was studied by the N2 adsorption,desorption isotherms and transmission electron microscopy (TEM), and their structure was systematically characterized by X-ray diffraction (XRD), UV/Vis diffuse reflectance- (DRS), infrared- (IR), and 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Characterization results suggest that the samples show very ordered hexagonal mesostructure, and the HPAs that are incorporated into the framework of meso-silica are insoluble during catalysis. Results of catalytic tests indicate that the materials demonstrated catalytic activity comparable with or even surpassing those of the bulk HPAs in catalytic tests implementing chemical reactions of bulky molecules (1,3,5-triisopropylbenzene cracking, esterification of benzoic acid with tert -butyl alcohol, and 2,3,6-trimethylphenol hydroxylation with H2O2). Additionally, some other properties, such as easy separation and stability when recycled, ensure their potential applications in the chemical industries. Here, we report not only the in situ synthesis and characterization of SiPMo-X, but also the difference in the catalytic properties of SiPMo-X and SiPW-X. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] An Expedient Synthesis of Perfluorinated Tetraazamacrocycles: New Ligands for Copper-Catalyzed Oxidation under Fluorous Biphasic ConditionsEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 20 2006Augustin de Castries Abstract Conjugate additions of cyclam to perfluorohexyl vinyl sulfone and sulfoxide, which act as efficient fluorous Michael acceptors, readily give access to new fluoro-ponytail tetraazamacrocycles in good yields. The solubility of the N -tetrasubstituted macrocycles depends dramatically on the nature of the polar function (SO or SO2): the sulfoxide cyclam derivative is soluble in perfluorodecaline (pfd) and perfluoromethylcyclohexane (pfmc) while the sulfonyl derivative is almost insoluble in organic or fluorous solvents. In agreement with the well known affinity of cyclam for copper(II) ions, stable copper complexes of the fluorous macrocyclic ligands have been isolated and characterized. In chloroform/methanol, complexes with four perfluorinated tails have been obtained from reaction of the tetra- N -perfluorohexylsulfinyl-substituted macrocycle with copper nitrate and copper perfluorocarboxylate. In trifluoroethanol, a selective retro-Michael reaction has been observed and the same reaction specifically gives copper complexes of the tri- N -substituted macrocycle. Complexes with three and four fluorous tails associated with perfluorocarboxylate counteranions are soluble in fluorous solvents (pfd and pfmc). These copper complexes were tested as catalysts for the oxidation of cyclohexene by molecular oxygen in the presence of tert -butyl hydroperoxide (tbhp). The oxidation reactions proceed under fluorous biphasic conditions and the catalyst can be recovered and reused. Quenching experiments indicate that cyclohexenyl hydroperoxide is the main oxidation product of the reaction performed with or without tbhp. Interestingly, these perfluorinated copper complexes are good, recyclable catalysts for the oxidation of cyclohexene by molecular oxygen without tbhp at room temperature and 65 °C.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis, implication of necessity for enzyme propertiesFEBS JOURNAL, Issue 9 2008Hsu-Han Chuang The functional and structural significance of the C-terminal region of Bacillus licheniformis chitinase was explored using C-terminal truncation mutagenesis. Comparative studies between full-length and truncated mutant molecules included initial rate kinetics, fluorescence and CD spectrometric properties, substrate binding and hydrolysis abilities, thermostability, and thermodenaturation kinetics. Kinetic analyses revealed that the overall catalytic efficiency, kcat/Km, was slightly increased for the truncated enzymes toward the soluble 4-methylumbelliferyl- N-N,-diacetyl chitobiose or 4-methylumbelliferyl- N - N,- N,-triacetyl chitotriose or insoluble ,-chitin substrate. By contrast, changes to substrate affinity, Km, and turnover rate, kcat, varied considerably for both types of chitin substrates between the full-length and truncated enzymes. Both truncated enzymes exhibited significantly higher thermostabilities than the full-length enzyme. The truncated mutants retained similar substrate-binding specificities and abilities against the insoluble substrate but only had approximately 75% of the hydrolyzing efficiency of the full-length chitinase molecule. Fluorescence spectroscopy indicated that both C-terminal deletion mutants retained an active folding conformation similar to the full-length enzyme. However, a CD melting unfolding study was able to distinguish between the full-length and truncated mutant molecules by the two phases of apparent transition temperatures in the mutants. These results indicate that up to 145 amino acid residues, including the putative C-terminal chitin-binding region and the fibronectin (III) motif of B. licheniformis chitinase, could be removed without causing a seriously aberrant change in structure and a dramatic decrease in insoluble chitin hydrolysis. The results of the present study provide evidence demonstrating that the binding and hydrolyzing of insoluble chitin substrate for B. licheniformis chitinase was not dependent solely on the putative C-terminal chitin-binding region and the fibronectin (III) motif. [source] Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formationFEBS JOURNAL, Issue 8 2005Sřren Vang Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are the most common hereditary cardiac conditions. Both are frequent causes of sudden death and are often associated with an adverse disease course. Alpha-cardiac actin is one of the disease genes where different missense mutations have been found to cause either HCM or DCM. We have tested the hypothesis that the protein-folding pathway plays a role in disease development for two actin variants associated with DCM and six associated with HCM. Based on a cell-free coupled translation assay the actin variants could be graded by their tendency to associate with the chaperonin TCP-1 ring complex/chaperonin containing TCP-1 (TRiC/CCT) as well as their propensity to acquire their native conformation. Some variant proteins are completely stalled in a complex with TRiC and fail to fold into mature globular actin and some appear to fold as efficiently as the wild-type protein. A fraction of the translated polypeptide became ubiquitinated and detergent insoluble. Variant actin proteins overexpressed in mammalian cell lines fail to incorporate into actin filaments in a manner correlating with the degree of misfolding observed in the cell-free assay; ranging from incorporation comparable to wild-type actin to little or no incorporation. We propose that effects of mutations on folding and fiber assembly may play a role in the molecular disease mechanism. [source] Functional analysis of disease-causing mutations in human galactokinaseFEBS JOURNAL, Issue 8 2003David J. Timson Galactokinase (EC 2.7.1.6) catalyzes the first committed step in the catabolism of galactose. The sugar is phosphorylated at position 1 at the expense of ATP. Lack of fully functional galactokinase is one cause of the inherited disease galactosemia, the main clinical manifestation of which is early onset cataracts. Human galactokinase (GALK1) was expressed in and purified from Escherichia coli. The recombinant enzyme was both soluble and active. Product inhibition studies showed that the most likely kinetic mechanism of the enzyme was an ordered ternary complex one in which ATP is the first substrate to bind. The lack of a solvent kinetic isotope effect suggests that proton transfer is unlikely to be involved in the rate determining step of catalysis. Ten mutations that are known to cause galactosemia were constructed and expressed in E. coli. Of these, five (P28T, V32M, G36R, T288M and A384P) were insoluble following induction and could not be studied further. Four of the remainder (H44Y, R68C, G346S and G349S) were all less active than the wild-type enzyme. One mutant (A198V) had kinetic properties that were essentially wild-type. These results are discussed both in terms of galactokinase structure-function relationships and how these functional changes may relate to the causes of galactosemia. [source] Microbial life in glacial ice and implications for a cold origin of lifeFEMS MICROBIOLOGY ECOLOGY, Issue 2 2007P. Buford Price Abstract Application of physical and chemical concepts, complemented by studies of prokaryotes in ice cores and permafrost, has led to the present understanding of how microorganisms can metabolize at subfreezing temperatures on Earth and possibly on Mars and other cold planetary bodies. The habitats for life at subfreezing temperatures benefit from two unusual properties of ice. First, almost all ionic impurities are insoluble in the crystal structure of ice, which leads to a network of micron-diameter veins in which microorganisms may utilize ions for metabolism. Second, ice in contact with mineral surfaces develops a nanometre-thick film of unfrozen water that provides a second habitat that may allow microorganisms to extract energy from redox reactions with ions in the water film or ions in the mineral structure. On the early Earth and on icy planets, prebiotic molecules in veins in ice may have polymerized to RNA and polypeptides by virtue of the low water activity and high rate of encounter with each other in nearly one-dimensional trajectories in the veins. Prebiotic molecules may also have utilized grain surfaces to increase the rate of encounter and to exploit other physicochemical features of the surfaces. [source] Dissimilatory ferrous iron oxidation at a low pH: a novel trait identified in the bacterial subclass RubrobacteridaeFEMS MICROBIOLOGY LETTERS, Issue 2 2008Christopher G. Bryan Abstract A novel iron-oxidizing acidophilic actinobacterium was isolated from spoil material at an abandoned copper mine. Phylogenetic analysis placed the isolate within the Rubrobacteridae subclass of the Actinobacteria. Its optimum temperature and pH for growth are 30,35 °C and pH 3.0, respectively. Although it could catalyze the dissimilatory oxidation of ferrous iron, growth yields declined progressively in media containing ferrous iron concentrations >100 ,M. The isolate, Pa33, did not grow or oxidize iron in the absence of organic carbon, and appeared to be an obligate heterotroph. Specific rates of iron oxidation were much smaller than those determined for the autotrophic iron-oxidizing proteobacterium Acidithiobacillus ferrooxidans and the heterotrophic iron-oxidizing actinobacterium Ferrimicrobium acidiphilum. Iron oxidation by isolate Pa33 appears to be a defensive mechanism, in which iron oxidation converts a soluble species to which the bacterium is sensitive to an oxidized species (ferric iron) that is highly insoluble in the spoil from which it was isolated. This is the first report of acidophily or dissimilatory iron oxidation within the Rubrobacteridae subclass and one of very few within the Actinobacteria phylum as a whole. [source] Nanoparticle Electroluminescence: Controlling Emission Color Through Förster Resonance Energy Transfer in Hybrid ParticlesADVANCED FUNCTIONAL MATERIALS, Issue 22 2009Christopher F. Huebner Abstract Electroluminescent (EL) polymers are attractive for developing all-organic light-emitting devices (OLEDs) due to the potential advantages that polymeric systems may offer in the large-scale manufacturing of electronics. Nonetheless, many of these EL , -conjugated polymers are inherently insoluble in the solvents employed in the intended solution-based manufacturing processes. One such polymer is poly(2,5-dioctyl-1,4-phenylenevinylene) (POPPV), where the inherent lack of solubility of POPPV in organic solvents has frustrated its widespread application in devices and no OLEDs have been presented that exploit its electroluminescence characteristics. In this effort, a unique strategy is presented for the preparation of hybrid nanoparticles composed of POPPV, a green emitter (,em,=,505,nm) and poly(9,9-di- n -octylfluorenyl-2,7-diyl) (PFO), a blue emitter (,em,=,417,nm). The aqueous-based nanoparticle dispersion composed of these hybrid particles is stable to aggregate and can be employed in the construction of OLEDs. The color characteristics of the electroluminescence for the devices can be tuned by exploiting the Förster resonance energy transfer between the polymers within a particle, while suppressing energy transfer between the particles. These aqueous-based nanoparticle dispersions are amenable to being printed into devices through high-throughput manufacturing techniques, for example, roll-to-roll printing. [source] Evaluation of gastric toxicity of indomethacin acid, salt form and complexed forms with hydroxypropyl-,-cyclodextrin on Wistar rats: histopathologic analysisFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2009A.C. Ribeiro-Rama Abstract Indomethacin (IM) is a non-steroidal anti-inflammatory drug which inhibits prostaglandin biosynthesis. It is practically insoluble in water and has the capacity to induce gastric injury. Hydroxypropyl-,-cyclodextrin (HP-,-CD) is an alkylated derivative of ,-CD with the capacity to form inclusion complexes with suitable molecules. IM is considered to form partial inclusion complexes with HP-,-CD by enclosure of the p -chlorobenzoic part of the molecule in the cyclodextrin channel, reducing the adverse effects. The aim of this paper is to evaluate the gastric damage induced by the IM inclusion complex prepared by freeze-drying and spray-drying. A total of 135 Wistar rats weighing 224.4 ± 62.5 g were put into 10 groups. They were allowed free access to water but were maintained fasted for 18 h before the first administration until the end of the experiment. IM acid-form, IM trihydrated-sodium-salt and IM-HP-,-CD spray and freeze-dried, at normal and toxic doses, were administered through gastric cannula once/day for 3 days. Seventy-two hours after the first administration, the animals were sacrificed and the stomachs collected and prepared for morphological study by using the haematoxylin-eosin technique. Lesion indexes (rated 0/4) were developed and the type of injury was scored according to the severity of damage and the incidence of microscopic evidence of harm. Microscopic assessment demonstrated levels of injury with index one on 10,25%. The type of complexation method had different incidence but the same degree. The results show that IM inclusion complexation protects against gastric injury, reducing the incidence and the maximum degree of severity from 4 to 1, with a better performance of the spray-dried complex. [source] A Lasing Organic Light-Emitting DiodeADVANCED MATERIALS, Issue 4 2010Bodo H. Wallikewitz Direct structuring of photocrosslinkable polyspirobifluorene copolymers by holographic lithography to yield insoluble, organic, distributed feedback (DFB) lasers with thresholds as low as 2,µJ,cm,2 is reported (see figure). These DFB lasers (X-LEP layer in figure) are embedded in the first optimized, multilayered slab-waveguide organic light-emitting diode with good luminance efficiency of ,6,cd A,1 and concomitant low laser thresholds. The effect of electrical excitation on the optically pumped laser is investigated for the first time. [source] Fates of Cdh23/CDH23 with mutations affecting the cytoplasmic region,HUMAN MUTATION, Issue 1 2006Satoshi Yonezawa Abstract BUS/Idr mice carrying a mutant waltzer allele (vbus) are characterized by splayed hair bundles in inner ear sensory cells, providing a mouse homolog of USH1D/DFNB12. RT-PCR-based screening for the presence of mutations in mouse Cdh23, the gene responsible for the waltzer phenotype, has identified a G>A mutation in the donor splice site of intron 67 (Cdh23:c.9633+1G>A: GenBank AF308939.1), indicating that two altered Cdh23 molecules having intron-derived COOH-terminal structures could be generated in BUS mouse tissues. Immunochemical analyses with anti-Cdh23 antibodies showed, however, no clear Cdh23-related proteins in vbus/vbus tissues, while the antibodies immunoreacted with ,350,kDa proteins in control mice. Immunofluorescent experiments revealed considerable weakening of Cdh23 signals in sensory hair cell stereocilia and Reissner's membrane in the vbus/vbus inner ear, and transmission electron microscopy demonstrated abundant autophagosome/autolysosome vesicles, suggesting aberrant Cdh23:c.9633+1G>A-derived protein-induced acceleration of lysosomal bulk degradation of proteins. In transfection experiments, signal sequence-preceded FLAG-tagged transmembrane plus cytoplasmic regions (TMCy) of tissue-specific Cdh23(±68) isoforms were localized to filamentous actin-rich protrusions and the plasma membrane of cultured cells, whereas FLAG-TMCy:c.9633+1G>A proteins were highly insoluble and retained in the cytoplasm. In contrast, FLAG-tagged TMCy:p.Arg3175His and human TMCy:c.9625_9626insC forms were both localized to the plasma membrane in cultured cells, allowing prediction that USH1D-associated CDH23:p.Arg3175His and CDH23:c.9625_9626insC proteins could be transported to the plasma membrane in vivo. The present results thus suggest different fates of CDH23/Cdh23 with mutations affecting the cytoplasmic region. Hum Mutat 27(1), 88,97, 2005. © 2005 Wiley-Liss, Inc. [source] Six novel alleles identified in Italian hereditary fructose intolerance patients enlarge the mutation spectrum of the aldolase B gene,,HUMAN MUTATION, Issue 6 2004Gabriella Esposito Abstract Hereditary fructose intolerance (HFI) is a recessively inherited disorder of carbohydrate metabolism caused by impaired functioning of human liver aldolase (B isoform; ALDOB). To-date, 29 enzyme-impairing mutations have been identified in the aldolase B gene. Here we report six novel HFI single nucleotide changes identified by sequence analysis in the aldolase B gene. Three of these are missense mutations (g.6846T>C, g.10236G>T, g.10258T>C), one is a nonsense mutation (g.8187C>T) and two affect splicing sites (g.8180G>C and g.10196A>G). We have expressed in bacterial cells the recombinant proteins corresponding to the g.6846T>C (p.I74T), g.10236G>T (p.V222F), and g.10258T>C (p.L229P) natural mutants to study their effect on aldolase B function and structure. All the new variants were insoluble; molecular graphics data suggest this is due to impaired folding. © 2004 Wiley-Liss, Inc. [source] Dissolution of root canal sealer cements in volatile solventsINTERNATIONAL ENDODONTIC JOURNAL, Issue 1 2000J. M. Whitworth Whitworth JM, Boursin EM. Dissolution of root canal sealer cements in volatile solvents. International Endodontic Journal, 33, 19,24, 2000. Aim There are few published data on the solubility profiles of endodontic sealers in solvents commonly employed in root canal retreatment. This study tested the hypothesis that root canal sealer cements are insoluble in the volatile solvents chloroform and halothane. Methodology Standardized samples (n=5) of glass ionomer (Ketac Endo), zinc oxide-eugenol (Tubli-Seal EWT), calcium hydroxide (Apexit) and epoxy resin (AH Plus) based sealers were immersed in chloroform or halothane for 30 s, 1 min, 5 min and 10 min. Mean loss of weight was plotted against time of exposure, and differences in behaviour assessed by multiple paired t-tests (P <0.01). Results Clear differences were shown in the solubility profiles of major classes of root canal sealer cements in two common volatile solvents. In comparison with other classes of material, Ketac Endo was the least soluble in chloroform and halothane (P <0.01), with less than 1% weight loss after 10 min exposure to either solvent. Apexit had low solubility with 11.6% and 14.19% weight loss after 10 min exposure to chloroform and halothane, respectively. The difference between solvents was not significant (P >0.01). Tubli-Seal EWT was significantly less soluble in halothane than chloroform (5.19% and 62.5% weight loss after 10 min exposure, respectively (P <0.01)). Its solubility in halothane was not significantly different from that of Apexit. AH Plus was significantly more soluble than all other materials in both chloroform and halothane (96% and 68% weight loss after 10 min exposure, respectively (P <0.01)). Conclusions There are significant differences in the solubility profiles of major classes of root canal sealer in common organic solvents. Efforts should continue to find a more universally effective solvent for use in root canal retreatment. [source] Iminium Salt-Catalysed Asymmetric Epoxidation using Hydrogen Peroxide as Stoichiometric OxidantADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2008Philip C. Bulman Page Abstract Iminium salt organocatalysts can provide high selectivity and high efficiency in catalytic asymmetric epoxidation. They are normally used in conjunction with Oxone as the stoichiometric oxidant. Oxone, however, has limited stability and is insoluble in most organic solvents; we report here for the first time the development of a reaction system driven by hydrogen peroxide as the stoichiometric oxidant, involving an unusual double catalytic cycle. [source] Syntheses and Properties of Fluorous Quaternary Phosphonium Salts that Bear Four Ponytails; New Candidates for Phase Transfer Catalysts and Ionic LiquidsADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 12-13 2006Charlotte Emnet Abstract The fluorous tertiary phosphine [Rf6(CH2)2]3P [Rfn=CF3(CF2)n,1] and excess PhCH2Br, CH3(CH2)3OSO2CF3, or Rf6(CH2)2OSO2CF3 react (CF3C6H5, 45,110,°C) to give the phosphonium salts (PhCH2)[Rf6(CH2)2]3P+ Br, (2, 71,%), [CH3(CH2)3][Rf6(CH2)2]3P+ CF3SO3, (3, 65,%), or [Rf6(CH2)2]4P+ CF3SO3, (4, 83,%). The phosphines [Rf6(CH2)2]2[Rf8(CH2)2]P and [Rf8(CH2)2]3P are similarly elaborated with Rf6(CH2)2I, Rf8(CH2)2I, or Rf8(CH2)2Br (DMF, 115,°C) to [Rf8(CH2)2]4- x[Rf6(CH2)2]xP+ I, (x=3, 7; 2, 8; 1, 9; 0, 10) or [Rf8(CH2)2]4P+ Br, (80,60,%). The salts exhibit melting points between 110,°C and 43,°C, with lower values favored by less symmetrical cations, Rf6 segments, and triflate and bromide anions. Solubilities decrease in the solvent sequence CF3C6F5 (all salts at least moderately soluble, room temperature)>acetone>THF>CF3C6H5>CF3C6F11>CH3C6H5, Et2O, CH2Cl2, hexane (all salts insoluble at elevated temperatures); some appreciably increase upon heating. Partition coefficients are very biased towards fluorous phases (>93:<7). The salts can be quite efficient at extracting picrate from water into CF3C6F5 (97,86,% for 2, 4, 9, 10) or CF3C6H5 (85,66,% for 2 - 4), demonstrating their potential for phase transfer catalysis. A CF3C6F5 solution of Rf8(CH2)3I and aqueous NaCl react at 100,°C in the presence (but not the absence) of 9 to give Rf8(CH2)3Cl. [source] Antibacterial activity of novel insoluble bead-shaped polymer-supported multiquaternary ammonium saltsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2010E. Murugan Abstract This study describes the effect of antibacterial activity of newly reported five different novel insoluble bead-shaped polymer-supported multiquaternary ammonium salts (PM quats) viz., bis-quat, tris-quat (2 Nos.), tetrakis-quat, hexakis-quat containing two, three, four, and six quaternary ammonium groups, respectively. The presence of number of quaternary ammonium groups in each salt was established already through Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and chloride ion analyzes. The antibacterial activities of these five different PM quats against three different bacteria viz., Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa were investigated by serial dilution and spread plate method and compared the same with a monoquat containing single quaternary ammonium group. The extent of antibacterial activity has been measured in terms of colony forming units (CFU) at different time intervals. The observed results show that all the PM quats exhibited excellent-antibacterial activity against each bacterium. On the basis of the CFU values, the antibacterial activity was found to increase from bis-quat to hexakis-quat, which reveals that the activity of PM quats increases with increase in the number of quaternary ammonium groups. The mechanism of interaction of quats with bacterial cytoplasmic membrane has been explained as an adsorption-like phenomenon. The reusability of highly active hexakis-quat against Staphylococcus aureus was studied and the activity was found to reduce after first cycle. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Organic and aqueous compatible polystyrene,maleic anhydride copolymer ultra-fine fibrous membranesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2009Corine Cécile Abstract Polystyrene,maleic anhydride copolymer (PSMA, Mv= 700 kDa) was synthesized and efficiently processed into 400 to 600 nm diameter fibers via electrospinning from either 20 wt % dimethylformamide or 25 wt % dimethylsulfoxide solution. Crosslinking of PSMA was effective by adding glycerol and poly(vinyl alcohol) (PVA) (Mw = 31,50 kDa) in the dimethylformamide and dimethylsulfoxide solutions, respectively. The PSMA fibers containing glycerol at 29.4 mol% were auto-crosslinked whereas those with 12.9 mol% (2 wt %) glycerol and 15.4 mol% (0.75 wt %) PVA required heating to induce intermolecular esterification. Heat-induced crosslinking with glycerol was more effective in rendering the PSMA fibrous membranes insoluble in all solvents whereas that with PVA remained soluble in most solvents except for acetone and tetrahydrofuran. The crosslinked fibrous membranes had improved thermally stability and retained physical integrity upon exposure (2 hr at 40°C) to carbon disulfide, the solvent for Friedel-Craft reactions of the styrene moiety. Hydrolysis (0.01N NaOH) of the auto-crosslinked fibrous membrane significantly improved its hydrophilicity by reducing the water contact angles from 90.6° to 62.5° in a matter of seconds. These ultra-high specific surface PSMA fibrous membranes have shown superior organic and aqueous solvent compatibility to be used as highly reactive and easily retrievable supports for solid-phase synthesis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] A simple method to obtain a swollen PVA gel crosslinked by hydrogen bondsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2009Emiko Otsuka Abstract A simple method to obtain a physically crosslinked poly(vinyl alcohol) (PVA) hydrogel is reported. In this technique, the PVA solution in pure water was simply cast at room temperature without using any additional chemical. The gelation proceeded during the dehydration after casting the PVA solution into a mold. After the completion of gelation, the swelling ratio of the gel in its equilibrium was measured whenever the solvent water was repeatedly exchanged. The weight gradually decreased due to the elution of non-crosslinked polymers into the solvent, and became constant after sufficient water exchange. The measurements using a Fourier Transform infrared spectroscopy and an X-ray diffraction suggested that the crosslinks due to hydrogen bonds and microcrystals were formed during the dehydration process of the PVA solution. We concluded that the sample obtained by the present method is a physically crosslinked polymer network, insoluble in water, i.e., a swollen gel in water. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] A positive-working photosensitive polyimide based on thermal cross-linking and acidolytic cleavageJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008Myung-Sup Jung Abstract A novel positive-working photosensitive polyimide (PSPI) based on a poly(hydroxyimide) (PHI), a crosslinking agent having vinyl ether groups, and a photoacid generator (PAG) was prepared. The PHI as a base resin of the three-component PSPI was synthesized from 4,4,-oxydiphthalic anhydride and 2,2,-bis(3-amino-4-hydroxyphenyl)hexafluoropropane through ring-opening polymerization and subsequent thermal cyclization. 2,2,-bis(4-(2-(vinyloxy)ethoxy)phenyl)propane (BPA-DEVE) was used as a vinylether compound and diphenyliodonium 5-hydroxynaphthalene-1-sulfonate was used as a PAG. The phenolic hydroxyl groups of the PHI and the vinyl ether groups of BPA-DEVE are thermally crosslinked with acetal structures during prebake step, and the crosslinked PHI becomes completely insoluble in an aqueous basic solution. Upon exposure to UV light (365 nm) and subsequent postexposure bake (PEB), a strong acid generated from the PAG cleaves the crosslinked structures, and the exposed area is effectively solubilized in the alkaline developer. The dissolution behavior of the PSPI containing each 11.5 wt % of BPA-DEVE and of the PAG was studied after UV exposure (365 nm) and PEB. It was found that the difference in dissolution rates between exposed and unexposed areas was enough to get high resolution. A fine positive pattern with a resolution of 5 ,m in a 3.7-,m-thick film was obtained from the three-component PSPI. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Chitosan-alginate films prepared with chitosans of different molecular weightsJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 4 2001Xiao-Liang Yan Abstract Chitosan-alginate polyelectrolyte complex (CS-AL PEC) is water insoluble and more effective in limiting the release of encapsulated materials compared to chitosan or alginate. Coherent CS-AL PEC films have been prepared in our laboratory by casting and drying suspensions of chitosan-alginate coacervates. The objective of this study was to evaluate the properties of the CS-AL PEC films prepared with chitosans of different molecular weights. Films prepared with low-molecular-weight chitosan (Mv 1.30 × 105) were twice as thin and transparent, as well as 55% less permeable to water vapor, compared to films prepared with high-molecular-weight chitosan (Mv 10.0 × 105). It may be inferred that the low-molecular-weight chitosan reacted more completely with the sodium alginate (Mv 1.04 × 105) than chitosan of higher molecular weight. A threshold molecular weight may be required, because chitosans of Mv 10.0 × 105 and 5.33 × 105 yielded films with similar physical properties. The PEC films exhibited different surface properties from the parent films, and contained a higher degree of chain alignment with the possible formation of new crystal types. The PEC films exhibited good in vitro biocompatibility with mouse and human fibroblasts, suggesting that they can be further explored for biomedical applications. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 58: 358,365, 2001 [source] Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissuesJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2004U. Ripamonti Abstract Bone morphogenetic and osteogenic proteins (BMPs/OPs), members of the transforming growth factor-, (TGF-,) superfamily, are soluble mediators of tissue morphogenesis and induce de novo endochondral bone formation in heterotopic extraskeletal sites as a recapitulation of embryonic development. In the primate Papio ursinus, the induction of bone formation has been extended to the TGF-, isoforms per se. In the primate and in the primate only, the TGF-, isoforms are initiators of endochondral bone formation by induction and act in a species-, site- and tissue-specific mode with robust endochondral bone induction in heterotopic sites but with limited new bone formation in orthotopic bone defects. The limited inductive capacity orthotopically of TGF-, isoforms is associated with expression of the inhibitory Smads, Smad6 and Smad7. In primates, bone formation can also be induced using biomimetic crystalline hydroxyapatite matrices with a specific surface geometry and without the exogenous application of osteogenic proteins of the TGF-, superfamily, even when the biomimetic matrices are implanted heterotopically in the rectus abdominis muscle. The sequence of events that directs new bone formation upon the implantation of highly crystalline biomimetic matrices initiates with vascular invasion, mesenchymal cell migration, attachment and differentiation of osteoblast-like cells attached to the substratum, expression and synthesis of osteogenic proteins of the TGF-, superfamily resulting in the induction of bone as a secondary response. The above findings in the primate indicate enormous potential for the bioengineering industry. Of particular interest is that biomimetic matrices with intrinsic osteoinductivity would be an affordable option in the local context. [source] Ionic liquids in the selective recovery of fat from composite foodstuffsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2009Huma Lateef Abstract BACKGROUND: Ionic liquids (ILs) are able to dissolve a wide range of organic and inorganic molecules and have potential application in the separation and recovery of valuable components from wastes. The potential for ILs to separate sugar and fat from food waste is demonstrated using chocolate as a model system. RESULTS: The ILs 1-(2-cyanoethyl)-3-methylimidazolium bromide (cyanoMIMBr), 1-propyl-3-methylimidazolium bromide (propylMIMBr), 1-hexylpyridinium bromide (hexylPyrBr) and 1-butyl-3-methylimidazolium chloride (butylMIMCl) were synthesised by microwave technology and fully characterised by mass spectrometry, thermogravimetric differential scanning calorimetery, thin layer chromatography, nuclear magnetic resonance and Fourier transform infrared spectroscopy. The solubilities of the fat and carbohydrate components in the ILs are reported for the two main ingredients in chocolate. CyanoMIMBr and propylMIMBr selectively solubilise sugar leaving the fat insoluble. Both cyanoMIMBr and propylMIMBr have been used to successfully separate sugars and cocoa butter fat from white, milk and dark chocolate and the Fourier transform infrared spectra and thermogravimetric differential scanning calorimeter profiles of the extracted fat samples are in good agreement with reference material data. CONCLUSIONS: The ILs cyanoMIMBr and propylMIMBr are successful in the separation and recovery of fat from white, milk and dark chocolate, as confirmed by FTIR and TG-DSC data. Copyright © 2009 Society of Chemical Industry [source] DIFFERENT ARRANGEMENT OF ,-(,-GLUTAMYL)LYSINE CROSS-LINKING IN ALASKA POLLOCK (THERAGRA CHALCOGRAMMA) SURIMI PROTEINS BY STREPTOVERTICILLIUM AND ENDOGENOUS TRANSGLUTAMINASES DURING SUWARI PROCESSJOURNAL OF FOOD BIOCHEMISTRY, Issue 5 2001KENJI SATO ABSTRACT The objective of the present study is to compare the protein cross-linking reaction in Alaska pollock surimi that is catalyzed by a commercially available microbial transglutaminase and by endogenous Alaska pollock transglutaminase. The endogenous transglutaminase was inhibited by EGTA and activated by CaCl2 The microbial transglutaminase was added to the salted surimi with and without EGTA and CaCl2. These surimi pastes were incubated at 25C up to 24 h followed by cooking at 90C. The resultant gels were fractionated into soluble and insoluble (aggregate) fractions by SDS-urea extraction. Compositional analysis revealed that the aggregate consisted predominantly of cross-linked myosin heavy chain. The distribution of ,-(,-glutamyl)lysine isopeptide in the soluble and aggregate fractions andpeptide mapping analyses of the aggregate fraction demonstrate that the formation of isopeptide cross-links in Alaska pollock surimi proteins during suwari process differs when catalyzed by the microbial transglutaminase and endogenous transglutaminase. [source] Rheological and Functional Properties of Catfish Skin Protein HydrolysatesJOURNAL OF FOOD SCIENCE, Issue 1 2010Huaixia Yin ABSTRACT:, Catfish skin is an abundant and underutilized resource that can be used as a unique protein source to make fish skin protein hydrolysates. The objectives of this study were to isolate soluble and insoluble proteins from hydrolyzed catfish skin, study the rheological and functional properties of the protein hydrolysates, and evaluate the properties of emulsions made from the protein powders. Freeze-dried catfish skin soluble (CSSH) and insoluble hydrolysate (CSISH) powders were analyzed for proximate analysis, emulsion stability, fat absorption, amino acids, color, and rheological properties. CSSH had significantly (P,< 0.05) higher protein, ash, and moisture content but lower fat content than that of CSISH. The yield of CSSH (21.5%± 2.2%) was higher than that of CSISH (3%± 0.3%). CSISH had higher emulsion stability than CSSH. CSSH was light yellow in color and CSISH was darker. The mean flow index values for emulsion containing CSSH (ECSSH) and CSISH (ECSISH) were both less than 1, indicating that they were both pseudoplastic fluid. The G, and G, values for the ECSISH were higher than that of ECSSH, indicating that the viscoelastic characteristic of the emulsion containing CSISH was greater than that of the emulsion containing CSSH. The study demonstrated the CSSH and CSISH had good functional and rheological properties. They have potential uses as functional food ingredients. [source] |