Home About us Contact | |||
Information Used (information + used)
Selected AbstractsLetter: Compressed Disparity Information Transmission over Constant Bit Rate ATM ChannelsEUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 5 2000Dionysis Papadimatos This letter presents a real-time lossless compression/decompression unit for disparity map information used in 3D teleconferencing systems. A lossless compression algorithm is used to compress the disparity map data in real-time, resulting in a variable bit-rate data stream that has to be transmitted through a constant bit-rate channel. The system uses a controlled-data-loss method for data rate adaptation and for minimizing the loss of information. [source] Construction of a taste-blind medaka fish and quantitative assay of its preference,aversion behaviorGENES, BRAIN AND BEHAVIOR, Issue 8 2008Y. Aihara In vertebrates, the taste system provides information used in the regulation of food ingestion. In mammals, each cell group within the taste buds expresses either the T1R or the T2R taste receptor for preference,aversion discrimination. However, no such information is available regarding fish. We developed a novel system for quantitatively assaying taste preference,aversion in medaka fish. In this study, we prepared fluorescently labeled foods with fine cavities designed to retain tastants until they were bitten by the fish. The subjects were fed food containing a mixture of amino acids and inosine monophosphate (AN food), denatonium benzoate (DN food) or no tastant (NT food), and the amounts of ingested food were measured by fluorescence microscopy. Statistical analysis of the fluorescence intensities yielded quantitative measurements of AN food preference and DN food aversion. We then generated a transgenic fish expressing dominant-negative G,i2 both in T1R-expressing and in T2R-expressing cells. The feeding assay revealed that the transgenic fish was unable to show a preference for AN food and an aversion to DN food. The assay system was useful for evaluating taste-blind behaviors, and the results indicate that the two taste signaling pathways conveying preferable and aversive taste information are conserved in fish as well as in mammals. [source] Classical reward conditioning in Drosophila melanogasterGENES, BRAIN AND BEHAVIOR, Issue 2 2007Y-C. Kim Negatively reinforced olfactory conditioning has been widely employed to identify learning and memory genes, signal transduction pathways and neural circuitry in Drosophila. To delineate the molecular and cellular processes underlying reward-mediated learning and memory, we developed a novel assay system for positively reinforced olfactory conditioning. In this assay, flies were involuntarily exposed to the appetitive unconditioned stimulus sucrose along with a conditioned stimulus odour during training and their preference for the odour previously associated with sucrose was measured to assess learning and memory capacities. After one training session, wild-type Canton S flies displayed reliable performance, which was enhanced after two training cycles with 1-min or 15-min inter-training intervals. Higher performance scores were also obtained with increasing sucrose concentration. Memory in Canton S flies decayed slowly when measured at 30 min, 1 h and 3 h after training; whereas, it had declined significantly at 6 h and 12 h post-training. When learning mutant t,,h flies, which are deficient in octopamine, were challenged, they exhibited poor performance, validating the utility of this assay. As the Drosophila model offers vast genetic and transgenic resources, the new appetitive conditioning described here provides a useful tool with which to elucidate the molecular and cellular underpinnings of reward learning and memory. Similar to negatively reinforced conditioning, this reward conditioning represents classical olfactory conditioning. Thus, comparative analyses of learning and memory mutants in two assays may help identify the molecular and cellular components that are specific to the unconditioned stimulus information used in conditioning. [source] A Self-Consistent Bathymetric Mapping AlgorithmJOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 1-2 2007Chris Roman The achievable accuracy of bathymetric mapping in the deep ocean using robotic systems is most often limited by the available guidance or navigation information used to combine the measured sonar ranges during the map making process. This paper presents an algorithm designed to mitigate the affects of poor ground referenced navigation by applying the principles of map registration and pose filtering commonly used in simultaneous localization and mapping (SLAM) algorithms. The goal of the algorithm is to produce a self-consistent point cloud representation of the bottom terrain with errors that are on a scale similar to the sonar range resolution rather than any direct positioning measurement. The presented algorithm operates causally and utilizes sensor data that are common to instrumented underwater robotic vehicles used for mapping and scientific explorations. Real world results are shown for data taken on several expeditions with the JASON remotely operated vehicle (ROV). Comparisons are made between more standard mapping approaches and the proposed method is shown to significantly improve the map quality and reveal scene information that would have otherwise been obscured due to poor direct navigation information. © 2007 Wiley Periodicals, Inc. [source] The potential of the European network of congenital anomaly registers (EUROCAT) for drug safety surveillance: a descriptive study,PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, Issue 9 2006Willemijn M. Meijer PharmD Abstract Background European Surveillance of Congenital Anomalies (EUROCAT) is a network of population-based congenital anomaly registries in Europe surveying more than 1 million births per year, or 25% of the births in the European Union. This paper describes the potential of the EUROCAT collaboration for pharmacoepidemiology and drug safety surveillance. Methods The 34 full members and 6 associate members of the EUROCAT network were sent a questionnaire about their data sources on drug exposure and on drug coding. Available data on drug exposure during the first trimester available in the central EUROCAT database for the years 1996,2000 was summarised for 15 out of 25 responding full members. Results Of the 40 registries, 29 returned questionnaires (25 full and 4 associate members). Four of these registries do not collect data on maternal drug use. Of the full members, 15 registries use the EUROCAT drug code, 4 use the international ATC drug code, 3 registries use another coding system and 7 use a combination of these coding systems. Obstetric records are the most frequently used sources of drug information for the registries, followed by interviews with the mother. Only one registry uses pharmacy data. Percentages of cases with drug exposure (excluding vitamins/minerals) varied from 4.4% to 26.0% among different registries. The categories of drugs recorded varied widely between registries. Conclusions Practices vary widely between registries regarding recording drug exposure information. EUROCAT has the potential to be an effective collaborative framework to contribute to post-marketing drug surveillance in relation to teratogenic effects, but work is needed to implement ATC drug coding more widely, and to diversify the sources of information used to determine drug exposure in each registry. Copyright © 2006 John Wiley & Sons, Ltd. [source] Discrimination of extant Pan species and subspecies using the enamel,dentine junction morphology of lower molarsAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2009Matthew M. Skinner Abstract Previous research has demonstrated that species and subspecies of extant chimpanzees and bonobos can be distinguished on the basis of the shape of their molar crowns. Thus, there is potential for fossil taxa, particularly fossil hominins, to be distinguished at similar taxonomic levels using molar crown morphology. Unfortunately, due to occlusal attrition, the original crown morphology is often absent in fossil teeth, and this has limited the amount of shape information used to discriminate hominin molars. The enamel,dentine junction (EDJ) of molar teeth preserves considerable shape information, particularly in regard to the original shape of the crown, and remains present through the early stages of attrition. In this study, we investigate whether the shape of the EDJ of lower first and second molars can distinguish species and subspecies of extant Pan. Micro-computed tomography was employed to non-destructively image the EDJ, and geometric morphometric analytical methods were used to compare EDJ shape among samples of Pan paniscus (N = 17), Pan troglodytes troglodytes (N = 13), and Pan troglodytes verus (N = 18). Discriminant analysis indicates that EDJ morphology distinguishes among extant Pan species and subspecies with a high degree of reliability. The morphological differences in EDJ shape among the taxa are subtle and relate to the relative height and position of the dentine horns, the height of the dentine crown, and the shape of the crown base, but their existence supports the inclusion of EDJ shape (particularly those aspects of shape in the vertical dimension) in the systematic analysis of fossil hominin lower molars. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc. [source] Balancing the Need to Develop Coastal Areas with the Desire for an Ecologically Functioning Coastal Environment: Is Net Ecosystem Improvement Possible?RESTORATION ECOLOGY, Issue 1 2005R.M. Thom Abstract The global human population is growing exponentially, close to a majority lives and works near the coast, and coastal commerce and development are critical to the economies of many nations. Hence, coastal areas will continue to be a major focus of development and economic activity. People desire the economic advantages provided by coastal development along with the fisheries and social commodities supported by estuarine and coastal ecosystems. Because of these facts, we view the challenge of balancing coastal development with enhancing nearshore marine and estuarine ecosystems (i.e., net ecosystem improvement) as the top priority for coastal researchers in this century. Our restoration research in Pacific Northwest estuaries and participation in nearshore project design and impact mitigation has largely dealt with these competing goals. To this end, we have applied conceptual models, comprehensive assessment methods, and principles of restoration ecology, conservation biology, and adaptive management to incorporate science into decisions about uses of estuarine systems. Case studies of Bainbridge Island and the Columbia River demonstrate the use of objective, defensible methods to prioritize tidally influenced shorelines and habitats (i.e., riparian forests, marshes, unvegetated flats, rocky shores, seagrass meadows, kelp forests) for preservation, conservation, and restoration. Case studies of Clinton, Washington, and Port Townsend, Washington, demonstrate the incorporation of an ecological perspective and technological solutions into design of overwater structures to minimize impacts on nearshore ecosystems. Adaptive management has allowed coastal development and restoration uncertainties to be better evaluated, with the information used to improve management decisions. Although unproven on a large scale, we think these kinds of methods can contribute to the net improvement of already degraded ecosystems. The ingredients include applied science to understand the issues, education, incentives, empirical data, cumulative impact analysis, and an effective adaptive management program. Because the option of net ecosystem improvement is often more costly than alternatives such as no net loss, commitment by the local or regional community to this approach is essential. [source] In vivo recordings from rat geniculate ganglia: taste response properties of individual greater superficial petrosal and chorda tympani neuronesTHE JOURNAL OF PHYSIOLOGY, Issue 3 2005Suzanne I. Sollars Coding of gustatory information is complex and unique among sensory systems; information is received by multiple receptor populations located throughout the oral cavity and carried to a single central relay by four separate nerves. The geniculate ganglion is the location of the somata of two of these nerves, the greater superficial petrosal (GSP) and the chorda tympani (CT). The GSP innervates taste buds on the palate and the CT innervates taste buds on the anterior tongue. To obtain requisite taste response profiles of GSP neurones, we recorded neurophysiological responses to taste stimuli of individual geniculate ganglion neurones in vivo in the rat and compared them to those from the CT. GSP neurones had a distinct pattern of responding compared to CT neurones. For example, a small subset of GSP neurones had high response frequencies to sucrose stimulation, whereas no CT neurones had high response frequencies to sucrose. In contrast, NaCl elicited high response frequencies in a small subset of CT neurones and elicited moderate response frequencies in a relatively large proportion of GSP neurones. The robust whole-nerve response to sucrose in the GSP may be attributable to relatively few, narrowly tuned neurones, whereas the response to NaCl in the GSP may relate to proportionately more, widely tuned neurones. These results demonstrate the diversity in the initial stages of sensory coding for two separate gustatory nerves involved in the ingestion or rejection of taste solutions, and may have implications for central coding of gustatory quality and concentration as well as coding of information used in controlling energy, fluid and electrolyte homeostasis. [source] Four-dimensional variational assimilation in the unstable subspace and the optimal subspace dimensionTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 647 2010Anna Trevisan Abstract Key apriori information used in 4D-Var is the knowledge of the system's evolution equations. In this article we propose a method for taking full advantage of the knowledge of the system's dynamical instabilities in order to improve the quality of the analysis. We present an algorithm for four-dimensional variational assimilation in the unstable subspace (4D-Var , AUS), which consists of confining in this subspace the increment of the control variable. The existence of an optimal subspace dimension for this confinement is hypothesized. Theoretical arguments in favour of the present approach are supported by numerical experiments in a simple perfect nonlinear model scenario. It is found that the RMS analysis error is a function of the dimension N of the subspace where the analysis is confined and is a minimum for N approximately equal to the dimension of the unstable and neutral manifold. For all assimilation windows, from 1 to 5 d, 4D-Var , AUS performs better than standard 4D-Var. In the presence of observational noise, the 4D-Var solution, while being closer to the observations, is farther away from the truth. The implementation of 4D-Var , AUS does not require the adjoint integration. Copyright © 2010 Royal Meteorological Society [source] An error analysis of radiance and suboptimal retrieval assimilationTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 565 2000J. Joiner Abstract One of the outstanding problems in data assimilation has been, and continues to be, how best to utilize satellite data while balancing the trade-off between accuracy and computational cost. A number of weather-prediction centres have recently achieved remarkable success in improving their forecast skill by changing the method in which satellite data are assimilated into the forecast model from the traditional approach of assimilating retrieved products to the direct assimilation of radiances in a variational framework. Although there are. clear theoretical advantages to the direct radiance-assimilation approach, it is not obvious at all to what extent the improvements that have been obtained so far can be attributed to the change in methodology or to various technical aspects of the implementation. The central question we address here is: how much improvement can we expect from assimilating radiances rather than retrievals, all other things being equal? We compare the two approaches in a simplified theoretical framework. Direct radiance analysis is optimal in this idealized context, while the traditional method of assimilating retrievals is suboptimal because it ignores the cross-covariances between background errors and retrieval errors. We show that interactive retrieval analysis (where the same background used for assimilation is also used in the retrieval step) is equivalent to direct assimilation of radiances with suboptimal analysis weights. We illustrate and extend these theoretical arguments with several one-dimensional analysis experiments, where we estimate vertical atmospheric profiles using simulated data from temperature sounding channels of both the High-resolution InfraRed Sounder 2 (HIRS2) and the future Atmospheric InfraRed Sounder (AIRS). In the case of non-interactive retrievals the results depend very much on the quality of the background information used for the retrieval step. In all cases, the impact of the choice of analysis method is dwarfed by the effect of changing some of the experimental parameters that control the simulated error characteristics of the data and the retrieval background. [source] |