Home About us Contact | |||
Infrared
Kinds of Infrared Terms modified by Infrared Selected AbstractsLaser local oxidation of porous silicon: a FTIR spectroscopy investigationPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2005M. Rocchia Abstract The local oxidation of porous silicon (PS), induced by a focused laser beam, could represent an alternative method for patterning PS through direct writing. Important phase changes take place on PS when irradiated by a focused laser beam and moreover a complete confinement of the oxidized areas can be achieved due to the very low thermal conductivity of PS. We present a detailed Fourier Transform InfraRed (FTIR) study of the irradiated areas to understand the degree of oxidation and the type of oxide obtained at different laser powers. An interpretation of the low wavenumber range, below 1300 cm,1, in terms of Fröhlich interactions will be discussed. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Deposition of Barrier Layers for Thin Film Solar Cells Assisted by Bipolar Substrate BiasingPLASMA PROCESSES AND POLYMERS, Issue S1 2009Evelyn Häberle Abstract For the development of diffusion and insulation barriers for thin film solar cells on unpolished steel with a rough surface as substrate, investigations of the shape of deposited SiOx layers in dependence on an applied substrate biasing are carried out. Si-wafers with a well-defined surface structure in the range of micrometre are used as ,model' substrate. As a result, the deposition in the indentations of this surface is much higher in the case of a biased substrate. To determine the influence of the bias on the molecular structure, first investigations of the deposited layer without an applied bias are performed with in situ Fourier Transform InfraRed (FTIR) spectroscopy. Hence the molecular composition of the films is monitored during the deposition. In these spectra the Berreman effect occurs and is analysed. [source] Growth and properties of ferroelectric potassium ferrocyanide trihydrate single crystalsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 9 2006R. Kanagadurai Abstract Single crystals of potassium ferrocyanide trihydrate, K4[Fe(CN)6·3H2O (KFCT), a ferroelectric material with Curie temperature 251K were grown in silica gel at room temperature for the first time by the solubility reduction method. Resorcinol and ethyl alcohol were used for the purpose of gel setting and supernatant liquid respectively. Optical and mechanical properties were studied for the grown crystal. The structure of the grown crystal was confirmed by X-ray diffraction analysis. Fourier Transform Infrared (FTIR) and FT Raman spectral analysis of the crystalline samples reveal that the crystalline sample consist consists of all functional groups. Thermal analysis of the crystalline sample was performed by TGA and DTA methods. The Vicker's micro hardness value was measured for KFCT crystals. The square etch pits with a hopper-like structure is an indicative of 2D nucleation mechanism. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Synthesis and characterization of potassium magnesium sulphate hexahydrate crystalsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 4 2006M. Dhandapani Abstract Potassium magnesium sulphate hexahydrate (picromerite) was synthesized and single crystals were obtained from saturated aqueous solution by slow evaporation method at room temperature. The crystals were bright, colourless and transparent having well defined external faces. The grown crystals were characterized through Fourier Transform Infrared (FTIR) spectral studies and thermal analysis. The FTIR data were used to assign the characteristic vibrational frequencies of the various chemical bonds in the compound. The compound crystallizes in monoclinic lattice with the space group P21/c. The thermogravimetry (TG) indicates the removal of only two water molecules around 100 °C. A suitable decomposition pattern was formulated based on the percentage weight losses observed in TG of the compound. The results of differential thermal analysis (DTA) conform to the results of TGA. Differential scanning calorimetry (DSC) analysis carried out at high temperature suggests that the occurrence of two phase transitions in the crystal between 140 and 180 °C. When the crystal was cooled below the room temperature up to ,170 °C, no thermal anomaly was observed. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Free radical graft copolymerization of poly(n -butyl methacrylate) and poly(butyl acrylate) onto chlorinated rubber: Characterization and mechanical properties,ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2004Shanaz Ahmed Abstract Graft copolymerization of n -butyl methacrylate and butyl acrylate onto chlorinated rubber was carried out in solution medium (xylene) using benzoyl peroxide as initiator. The chlorinated rubber-g-(n -butyl methacrylate- co -butyl acrylate) (CR-g-nBMA- co -BA) was isolated from the copolymerization mixture by extracting with isopropyl ether. Infrared (FT-IR) spectra, proton nuclear magnetic resonance (1H NMR) and thermogravimetric analysis of the graft copolymer showed the occurrence of grafting. Percent grafting and grafting efficiency calculated under different experimental conditions are discussed. The mechanical properties of the grafted CR films were studied under different strain rates. © 2004 Wiley Periodicals, Inc. Adv Polym Techn 23: 103,110, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20003 [source] Molecular imprinted solid-phase extraction of huperzine A from Huperzia SerrataJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2009Guosong Wang Abstract On the basis of the non-covalent interaction between template and monomer, porous molecularly imprinted polymers (MIPs) were synthesized by a thermal-initiated polymerization method using huperzine A as template, acrylamide, or methacrylic acid as function monomer, ethylene glycol dimethacrylate as cross-linking agent. The interaction between template and functional monomers was studied by UV spectrophotometry, which showed a formation of huperzine A-monomer complexes with stoichiometric ratio of 1 : 2 in the pre-polymerized systems. The resultant MIP particles were tested in the equilibrium binding experiment to analyze their adsorption ability to huperzine A, and were characterized by Fourier Transform Infrared (FTIR) study. The recognition properties of MIP were estimated in solid-phase extraction by selecting four compounds (isolated from the Chinese herb Huperzia serrata) as substrates, and were compared with and prior to those of the NIP. High affinity and adsorption of MIP1 which was prepared in chloroform with huperzine A as imprinted molecule, and acrylamide (AM) as functional monomer, made an attractive application of MIP1 in separation processes. In final, using MIP1 solid-phase extraction micro-column, huperzine A was enriched and separated from the real extraction sample of Huperzia serrata. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Synthesis, cure kinetics, and thermal properties of the Bis(3-allyl-2-cyanatophenyl)sulphoxide/BMI blendsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008G. Anuradha Abstract A novel allyl functionalized dicyanate ester resin bearing sulfoxide linkage was synthesized. The monomer was characterized by Fourier Transform Infrared (FT-IR) Spectroscopy, 1H-, and 13C Nuclear Magnetic Resonance (NMR) spectroscopy and elemental analysis. The monomer was blended with bismaleimide (BMI) at various ratios in the absence of catalyst. The cure kinetics of one of the blends was studied using differential scanning calorimetry [nonisothermal] and the kinetic parameters like activation energy (E), pre-exponential factor (A), and the order of the reaction (n) were calculated by Coats-Redfern method and compared with those calculated using the experimental Borchardt-Daniels method. The thermal stability of the cured dicyanate, BMI, and the blends was studied using thermogravimetric analyzer. The initial weight loss temperature of dicyanate ester is above 380°C with char yield of about 54% at 800°C. Thermal degradation of BMI starts above 463°C with the char yield of about 68%. Inclusion of BMI in cyanate ester increases the thermal stability from 419 to 441°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Preparation and conductivity of substituted germanic heteropoly acids polyethylene glycol hybrid materialsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008Shouli Zhao Abstract In this work, the polyethylene glycol (PEG) hybrid materials composited with substituted germanic heteropoly acids were prepared. Infrared (IR) spectra revealed that the Keggin structure characteristic of the GeM11VO405, anion were present in the hybrid materials. At room temperature (20°C), the conductivity of the products is 4.07 × 10,3 S cm,1 and 2.12 × 10,3 S cm,1, respectively. The results indicated that the conductivity of substituted germanic heteropoly acids PEG hybrid materials is higher than that of the corresponding pure substituted germanic heteropoly acids. According to the experimental results, we proposed a possible mechanism of the proton conduction of the hybrid materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] FT-IR spectroscopy in diagnosis of diabetes in rat animal modelJOURNAL OF BIOPHOTONICS, Issue 8-9 2010Feride Severcan Abstract In recent years, Fourier Transform Infrared (FT-IR) spectroscopy has had an increasingly important role in the field of pathology and diagnosis of disease states. In the current study, FT-IR spectroscopy together with cluster analysis were used as a diagnostic tool in the discrimination of diabetic samples from control ones in rat kidney plasma membrane apical sides (brush-border membranes), liver microsomal membranes and Extensor digitorum longus (EDL) and Soleus (SOL) skeletal muscle tissues. A variety of alterations in the spectral parameters, such as frequency and signal intensity/area was observed in diabetic tissues and membranes compared to the control samples. Based on these spectral variations, using cluster analysis successful differentiation between diabetic and control groups was obtained in different spectral regions. The results of this current study further revealed the power and sensitivity of FT-IR spectroscopy in precise and automated diagnosis of diabetes. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] A physiochemical theory on the applicability of soft mathematical models,experimentally interpretedJOURNAL OF CHEMOMETRICS, Issue 7-8 2010L. Munck Abstract An extension of chemometric theory was experimentally explored to explain the physiochemical basis of the very high efficiency of soft modelling of data from nature. Soft modelling in self-organisation was interpreted by studying the unique chemical patterns of mutants in an isogenic barley model on endosperm development. Extremely reproducible, differential Near Infrared (NIR) spectral patterns specifically overviewed the effect on cell composition of each mutant cause. Extended Canonical Variates Analysis (ECVA) classified spectra in wild type, starch and protein mutants. The spectra were interpreted by chemometric data analysis and by pattern inspection to morphological, genetic, molecular and chemical information. Deterministic chemical reactions were defined in the glucan pathway. A drastic mutation in a gene controlling the starch/ß-glucan composition changed water activity that introduced a diffusive, stochastic effect on the catalysis of all active enzymes. ,Decision making' in self-organisation is autonomous and performed by the soft modelling of the chemical deterministic and stochastic reactions in the endosperm cell as a whole. Uncertainty in the analysis of endosperm emergence was experimentally delimited as the ,indeterminacy' in local molecular path modelling ,bottom up' and the ,irreducibility' of the phenomenological NIR spectra ,top down'. The experiment confirmed Ilya Prigogine's interpretation of self-organisation by his dynamic computer model programmed with a self-modeled non-local extension of quantum mechanics (QM). The significance of self- organisation explained by Prigogine here interpreted as physiochemical soft modelling introduces a paradigm shift in macroscopic science that forwards a major argument for soft mathematical modelling and chemometrics to obtain full scientific legitimacy. Copyright © 2010 John Wiley & Sons, Ltd. [source] Detection of Sublethal Thermal Injury in Salmonella enterica Serotype Typhimurium and Listeria monocytogenes Using Fourier Transform Infrared (FT-IR) Spectroscopy (4000 to 600 cm,1)JOURNAL OF FOOD SCIENCE, Issue 2 2008H.M. Al-Qadiri ABSTRACT:, Fourier transform infrared (FT-IR) spectroscopy (4000 to 600 cm,1) was utilized to detect sublethally heat-injured microorganisms: Salmonella enterica serotype Typhimurium ATCC 14028, a Gram-negative bacterium, and Listeria monocytogenes ATCC 19113, a Gram-positive bacterium. A range of heat treatments (N= 2) at 60 °C were evaluated: 0D (control), 2D, 4D, 6D, and 8D using a D60 °C (S. enterica serotype Typhimurium ATCC 14028 = 0.30 min, L. monocytogenes ATCC 19113 = 0.43 min). The mechanism of cell injury appeared to be different for Gram-negative and Gram-positive microbes as observed from differences in the 2nd derivative transformations and loadings plot of bacterial spectra following heat treatment. The loadings for PC1 and PC2 confirmed that the amide I and amide II bands were the major contribution to spectral variation, with relatively small contributions from C-H deformations, the antisymmetric P==O stretching modes of the phosphodiester nucleic acid backbone, and the C-O-C stretching modes of polysaccharides. Using soft independent modeling of class analogy (SIMCA), the extent of injury could be predicted correctly at least 83% of the time. Partial least squares (PLS) calibration analysis was constructed using 5 latent variables for predicting the bacterial counts for survivors of the different heat treatments and yielded a high correlation coefficient (R= 0.97 [S. enterica serotype Typhimurium] and 0.98 [L. monocytogenes]) and a standard error of prediction (SEP= 0.51 [S. enterica serotype Typhimurium] and 0.39 log10 CFU/mL [L. monocytogenes]), indicating that the degree of heat injury could be predicted. [source] Spectroscopic Differentiation and Quantification of Microorganisms in Apple JuiceJOURNAL OF FOOD SCIENCE, Issue 7 2004Chenxu Yu ABSTRACT: A fast and easy-to-operate Fourier Transform Infrared (FTIR) spectrometry-based approach was developed for microbial differentiation and quantification in apple juice. Eight different microorganisms were evaluated: Enterobacter cloacae, Salmonella typhimurium, Enterobacteraerogenes, Salmonella choleraesuis, Serratia marcescens, Pseudomonas vulgaris, Vibrio cholerae, and Hafnia alvei. FTIR spectroscopy combined with chemometrics could differentiate the microorganisms studied at low concentration level of 103 colony-forming units (CFU) /mL in apple juice. The chemometric models developed to count microorganisms in apple juice were validated by an independent test set consisting of 18 samples and correlated against plate counts satisfactorily up to a detection limit of 103 CFU/mL. [source] Infrared and nuclear magnetic resonance properties of benzoyl derivatives of five-membered monoheterocycles and determination of aromaticity indicesJOURNAL OF HETEROCYCLIC CHEMISTRY, Issue 5 2003Kyu Ok Jeon Benzophenones, 2-benzoylthiophenes, 2-benzoylpyrroles, and 2-benzoylfurans, which have substituents at m - and p -positions of the benzoyl ring were prepared and their ir and nmr spectra were obtained in 0.1 M chloroform- d solution. The chemical shift values of each series were plotted against the Hammett substituent parameters to give good correlation, with the exception of the ortho -Hs and -Cs. The slopes as well as the differences in chemical shift gave sets of meaningful values for the indices of aromaticy. [source] Chitosan(chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorptionAICHE JOURNAL, Issue 8 2009Xiaoqi Sun Abstract Chitosan(chitin)/cellulose composites as biodegradable biosorbents were prepared under an environment-friendly preparation processes using ionic liquids. Infrared and X-ray photoelectron spectra indicated the stronger intermolecular hydrogen bond between chitosan and cellulose, and the hydroxyl and amine groups were believed to be the metal ion binding sites. Among the prepared biosorbents, freeze-dried composite had higher adsorption capacity and better stability. The capacity of adsorption was found to be Cu(II) (0.417 mmol/g) > Zn(II) (0.303 mmol/g) > Cr(VI) (0.251 mmol/g) > Ni(II) (0.225 mmol/g) > Pb(II) (0.127 mmol/g) at the same initial concentration 5 mmol L,1. In contrast to some other chitosan-type biosorbenrts, preparation and component of the biosorbent were obviously more environment friendly. Moreover, adsorption capacity of chitosan in the blending biosorbent could be fully shown. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Analysis of low content drug tablets by transmission near infrared spectroscopy: Selection of calibration ranges according to multivariate detection and quantitation limits of PLS modelsJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2008Manel Alcalà Abstract The content uniformity of low dose products is a major concern in the development of pharmaceutical formulations. Near infrared spectroscopy may be used to support the design and optimization of potent drug manufacturing processes through the analysis of blends and tablets in a relatively short time. A strategy for the selection of concentration ranges in the development of multivariate calibration is presented, evaluating the detection and quantitation limits of the obtained multivariate models. The strategy has been applied to the determination of an active principle in pharmaceutical tablets of low concentration (0,5%, w/w), using Fourier Transform Near Infrared (FT-NIR) transmission spectroscopy. The quantitation and detection limits decreased as the upper concentration level of the calibration models was reduced. The results obtained show that the selection of concentration ranges is a critical aspect during model design. The selection of wide concentration ranges with high levels is not recommended for the determination of analytes at minor levels (<1%, w/w), even when the concentration of interest is within the range of the model. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:5318,5327, 2008 [source] Characteristics of hydrogen bond formation between sugar and polymer in freeze-dried mixtures under different rehumidification conditions and its impact on the glass transition temperatureJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2008Koreyoshi Imamura Abstract The characteristics of hydrogen bond formation between trehalose and polyvinylpyrrolidone (PVP) in amorphous mixtures at different hydration states were quantitatively investigated. Amorphous trehalose,PVP mixtures were prepared by freeze-drying and equilibrated at different relative humidities (RH). Infrared (IR) spectra of the trehalose,PVP mixtures were obtained by Fourier transform IR spectroscopy,(FTIR) and the IR band corresponding to CO groups of PVP was deconvolved into the component bands responsible for CO groups that were free and restricted by hydrogen bonds, to estimate the degree of the trehalose,PVP interactions. The FTIR analysis indicated that approximately 80% of the CO groups of PVP formed hydrogen bonds with trehalose in the presence of more than 3 g of trehalose per gramme of PVP, independent of the RH. IR analysis of the OH stretching vibration of the sugar demonstrated that the presence of PVP lead to an increase in the free hydroxyl groups of trehalose that did not form hydrogen bonds at RH 0%. On the other hand, the water sorption behavior of the trehalose,PVP mixtures suggested that rehumidification diminished the effect of PVP on increasing the free OH groups. Thus a peculiar relationship may exist between Tg, RH and the composition of the mixture: The presence of PVP increased Tg at RHs 0 and above 23% but decreased Tg at 11%. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:1301,1312, 2008 [source] FOURIER TRANSFORM INFRARED SPECTROSCOPY AS A NOVEL TOOL TO INVESTIGATE CHANGES IN INTRACELLULAR MACROMOLECULAR POOLS IN THE MARINE MICROALGA CHAETOCEROS MUELLERII (BACILLARIOPHYCEAE)JOURNAL OF PHYCOLOGY, Issue 2 2001Mario Giordano Fourier Transform Infrared (FT-IR) spectroscopy was used to study carbon allocation patterns in response to changes in nitrogen availability in the diatom Chaetoceros muellerii Lemmerman. The results of the FT-IR measurements were compared with those obtained with traditional chemical methods. The data obtained with both FT-IR and chemical methods showed that nitrogen starvation led to the disappearance of the differences in cell constituents and growth rates existing between cells cultured at either high [NO3,] or high [NH4+]. Irrespective of the nitrogen source supplied before nitrogen starvation, a diversion of carbon away from protein, chlorophyll, and carbohydrates into lipids was observed. Under these conditions, cells that had previously received nitrogen as nitrate appeared to allocate a larger amount of mobilized carbon into lipids than cells that had been cultured in the presence of ammonia. All these changes were reversed by resupplying the cultures with nitrogen. The rate of protein accumulation in the N-replete cells was slower than the rate of decrease under nitrogen starvation. This study demonstrates that the relative proportions of the major macromolecules contained in microalgal cells and their changes in response to external stimuli can be determined rapidly, simultaneously, and inexpensively using FT-IR. The technique proved to be equally reliable to and less labor intensive than more traditional chemical methods. [source] Triphenylamine-based fluorescent conjugated copolymers with pendant terpyridyl ligands as chemosensors for metal ionsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2010Yi Cui Abstract Two well-defined triphenylamine-based fluorescent conjugated copolymers with pendant terpyridyl ligands were synthesized through Suzuki coupling polymerization and were further characterized by 1H-NMR, 13C-NMR, gel permeation chromatography, Infrared, and UV-vis spectra. Polymer P-1, terpyridine-bearing poly(triphenylamine- alt -fluorene) with a high fluorescence quantum yield (62%) shows much higher sensitivities toward Fe3+, Ni2+, and Cu2+ as compared with the other metal ions investigated. Especially, Fe3+ can lead to an almost complete fluorescence quenching of polymer P-1. Whereas, the analogous polymer P-2, in which N -ethylcarbazole repeat units replace the fluorene units in P-1, shows a very poor selectivity. It demonstrates that polymers with a same receptor may show different sensitivity to analytes owing to their different type of backbones. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1310,1316, 2010 [source] Synthesis and properties of nitrogen-linked poly(2,7-carbazole)s as hole-transport material for organic light emitting diodesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2009Tsuyoshi Michinobu Abstract A novel class of carbazole polymers, nitrogen-linked poly(2,7-carbazole)s, was synthesized by polycondensation between two bifunctional monomers using the palladium-catalyzed amination reaction. The polymers were characterized by 1H NMR, Infrared, Gel permeation chromatography, and MALDI-TOF MS and it was revealed that the combination of the monomer structures is important for producing high molecular weight polymers. Thermal analysis indicated a good thermal stability with high glass transition temperatures, e.g., 138 °C for the higher molecular weight polymer P2. To pursue the application possibilities of these polymers, their optical properties and energy levels were investigated by UV-Vis absorption and fluorescence spectra as well as their electrochemical characteristics. Although the blue light emission was indeed observed for all polymers in solution, the quantum yields were very low and the solid films were not fluorescent. On the other hand, the HOMO levels of the polymers estimated from the onset potentials for the first oxidation in the solid thin films were relatively high in the range of ,5.12 to ,5.20 eV. Therefore, light emitting diodes employing these polymers as a hole-transport layer and iridium(III) complex as a triplet emitter were fabricated. The device of the nitrogen-linked poly(2,7-carbazole) P3 with p,p,-biphenyl spacer, which has a higher HOMO level and a higher molecular weight, showed a much better performance than the device of P2 with m -phenylene spacer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3880,3891, 2009 [source] Infrared and laser Raman spectra of bis(DL -methioninium) sulfateJOURNAL OF RAMAN SPECTROSCOPY, Issue 9 2005S. Ramaswamy Abstract The infrared and laser-excited Raman spectra of bis(DL -methioninium) sulfate crystal were recorded and analyzed at room temperature. The vibrational assignments of the observed wavenumbers were made based on group theoretical analysis. The presence of CO group is confirmed. Factor group analysis was carried out and the number of normal vibrational modes was calculated. The shifting of several stretching and bending wavenumbers suggests that the extensive intermolecular hydrogen bonding causes both linear and angular distortions of several groups. The splitting of the threefold degenerate stretching and bending modes of the sulfate group confirms the distortion of its Td symmetry due to hydrogen bonding. Copyright © 2005 John Wiley & Sons, Ltd. [source] Infrared and Raman characteristic group frequencies.JOURNAL OF RAMAN SPECTROSCOPY, Issue 10 20042001., Chichester, Tables, Third Edition, charts George Socrates John Wiley No abstract is available for this article. [source] Cathodic electrochemiluminescence of acetonitrile, acetonitrile,1,10-phenanthroline and acetonitrile,ternary Eu(III) complexes at a gold electrodeLUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 2 2006Hong-Xiao Yu Abstract Cathodic electrochemiluminescence (ECL) behaviours of the acetonitrile, acetonitrile,1,10-phenanthroline (phen) and acetonitrile,ternary Eu(III) complex systems at a gold electrode were studied. One very weak cathodic ECL-2 at ,3.5 V was observed in 0.1 mol/L tetrabutylammonium tetrafluoroborate (TBABF4) acetonitrile solution. When 10 mmol/L tetrabutylammonium peroxydisulphate [(TBA)2S2O8] was added to 0.1 mol/L TBABF4 acetonitrile solution, another cathodic ECL-1 at ,2.7 V appeared and the potential for ECL-2 was shifted from ,3.5 to ,3.1 V. Furthermore, ECL-2 intensity was enhanced about 20-fold. When 1 × 10,4 mol/L phen was added to 0.1 mol/L TBABF4 + 10 mmol/L (TBA)2S2O8 acetonitrile solution, the ECL intensities of ECL-1 and ECL-2 were enhanced about 20-fold compared with those of 0.1 mol/L TBABF4 + 10 mmol/L (TBA)2S2O8 acetonitrile solution. The maximum emission peaks of ECL-1 and ECL-2 in the three systems mentioned above appeared at about 530 nm. The products obtained by electrolysing 0.1 mol/L TBABF4 acetonitrile solution at ,3.5 V for 20 min were analysed by Fourier Transform Infrared (FTIR) spectra and gas chromatography,mass spectrometry (GC,MS) and the emitter of ECL-1 and ECL-2 was identified as excited state polyacetonitrile. When ternary Eu(III) complexes were presented in 0.1 mol/L TBABF4 + 10 mmol/L (TBA)2S2O8 acetonitrile solution, another maximum emission peak with a narrow band centred at about 610 nm appeared in ECL-1 in addition to the maximum emission peaks at about 530 nm for ECL-1 and ECL-2. The emitter of ECL emission at 610 nm was identified as the excited states Eu(III)*. The mechanisms for cathodic ECL behaviours of the acetonitrile, acetonitrile,phen and acetonitrile,ternary Eu(III) complex systems at a gold electrode have been proposed. The extremely sharp emission bands for ternary Eu(III) complexes may have analytical potential. Copyright © 2006 John Wiley & Sons, Ltd. [source] Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star clusterMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010M. Schartmann ABSTRACT Recently, high-resolution observations with the help of the near-infrared adaptive optics integral field spectrograph Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the Very Large Telescope proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of three-dimensional high-resolution hydrodynamical simulations with the Pluto code, we follow the evolution of such clusters, especially focusing on stellar mass loss feeding gas into the ambient interstellar medium and driving turbulence. This leads to a vertically wide distributed clumpy or filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. In order to capture the relevant physics in the inner region, we treat this disc separately by viscously evolving the radial surface density distribution. This enables us to link the tens of parsec-scale region (accessible via SINFONI observations) to the (sub-)parsec-scale region (observable with the mid-infrared interferometer instrument and via water maser emission). Thereby, this procedure provides us with an ideal testbed for data comparison. In this work, we concentrate on the effects of a parametrized turbulent viscosity to generate angular momentum and mass transfer in the disc and additionally take star formation into account. Most of the input parameters are constrained by available observations of the nearby Seyfert 2 galaxy NGC 1068, and we discuss parameter studies for the free parameters. At the current age of its nuclear starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8,0.9 pc, gas masses of 106 M, and mass transfer rates of 0.025 M, yr,1 through the inner rim of the disc. This shows that our large-scale torus model is able to approximately account for the disc size as inferred from interferometric observations in the mid-infrared and compares well to the extent and mass of a rotating disc structure as inferred from water maser observations. Several other observational constraints are discussed as well. [source] VLT/SINFONI integral field spectroscopy of the Super-antennae,MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2007J. Reunanen ABSTRACT We present the results of H - and K -band very large telescope/Spectrograph for INtegral Field Observations in the Near Infrared (VLT/SINFONI) integral field spectroscopy of the Ultraluminous Infrared Galaxy (ULIRG) IRAS 19 254,7245 (the Super-antennae), an interacting double galaxy system containing an embedded active galactic nuclei. Deep K -band spectroscopy reveals Pa, arising in a warped disc with position angle of 330° and an inclination i= 40°,55°. The kinemetric parameters derived for H2 are similar to Pa,. Two high-ionization emission lines, [Si vi] and [Al ix], are detected and we identify as [Ni ii] the line observed at 1.94 ,m. Diluting non-stellar continuum, which was previously detected, has decayed, and the H -band continuum emission is consistent with pure stellar emission. Based on H2 emission-line ratios, it is likely that at the central 1-kpc region H2 is excited by ultraviolet fluorescence in dense clouds while shock excitation is dominant further out. This scenario is supported by very low Pa, to H2 line ratio detected outside the nuclear region and non-thermal ortho/para ratios (,2.0,2.5) close to the nucleus. [source] Infrared [Fe ii] emission in the circumstellar nebulae of luminous blue variablesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2002Nathan Smith Abstract After a serendipitous discovery of bright [Fe ii],16435 emission in nebulae around , Carinae and P Cygni, infrared spectra of other luminous blue variables (LBV) and LBV candidates were obtained. Bright infrared [Fe ii] emission appears to be a common property among LBVs with prominent nebulae; this is an interesting discovery because strong [Fe ii],16435 is typically seen in shock-excited objects like supernova remnants and outflows from newly formed massive stars, as well as in active galactic nuclei (AGN), where the excitation mechanism is uncertain. This paper presents spectra in the H-band (1.5 to 1.75 ,m) for the central stars and nebulae of , Car, AG Car, P Cyg, Wra 751, HR Car, HD 168625, HD 160529, R 127 and S Doradus. Seven of nine targets show bright [Fe ii],16435 in their nebulae, while it is absent in all central stars except the LBV candidate Wra 751. The two objects (S Dor and HD 160529) without prominent [Fe ii],16435 are not yet known to have nebulae detected in optical images, and both lack bright thermal infrared emission from dust. The possible excitation mechanisms for this line and the implications of its discovery in LBV nebulae are discussed; there are good reasons to expect shock excitation in some objects, but other mechanisms cannot be ruled out. [source] Interface of atomic layer deposited Al2O3 on H-terminated siliconPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 9 2006K. Y. Gao Abstract Al2O3 films 1 to 20 nm thick were deposited as alternative high-, gate dielectric on hydrogen-terminated silicon by Atomic Layer Deposition (ALD) and characterized by Synchrotron X-ray Photoelectron Spec-troscopy (SXPS), Fourier Transform Infrared (FTIR) absorption spectroscopy and admittance measure-ments. The SXPS results indicate that about 60% of the original Si,H surface bonds are preserved at the Al2O3/Si interface and this is confirmed by monitoring the Si,H stretching modes by FTIR spectroscopy in the Attenuated Total Reflection (ATR) mode both before and after ALD of Al2O3. The remaining 40% of Si,H bonds are replaced by Si,O bonds as verified by SXPS. In addition, a fraction of a monolayer of SiO2 forms on top of the Al2O3 dielectric during deposition. The presence of OH-groups at a level of 3% of the total oxygen content was detected throughout the Al2O3 layer through a chemically shifted O 1s component in SXPS. Admittance measurements give a dielectric constant of 9.12, but a relatively high density of interface traps between 1011 and 1012 cm,2 eV,1. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Deposition of Plasma-Polymerized 1-Cyanoisoquinoline Thin Films and Their Dielectric PropertiesPLASMA PROCESSES AND POLYMERS, Issue 9 2007Xiong-Yan Zhao Abstract A novel plasma-polymerized 1-cyanoisoquinoline (PPCIQ) thin film of desired thickness was prepared by plasma polymerization under different glow discharge conditions. The effect of the discharge power on the chemical structure, surface composition and morphology of the PPCIQ thin films were investigated by Fourier Transform Infrared (FTIR) Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and deposition rate measurements. A high retention of the aromatic ring structure of the starting monomer in the deposited plasma films is obtained at a low discharge power of 15 W. The plasma-synthesized films are homogeneous and quite suitable for the measurement of dielectric properties. The dielectric measurements show that a low dielectric constant of 2.62 has been obtained for the PPCIQ thin films for the first time. [source] Study of pseudo-multilayer structures based on starch-polycaprolactone extruded blendsPOLYMER ENGINEERING & SCIENCE, Issue 6 2009Laurent Bélard This article is focused on the analysis of the structure-process relationships of biodegradable materials. It is mainly focused on the analysis of phase separation phenomenon occurring during the extrusion of plasticized starch/polycaprolactone blends, in a slit die. Rheological characterizations are carried out, in-line in an instrumented slit die at the exit of the extruder and, out-line with different rheometers. In certain conditions, a pseudo-multilayer structure can be generated with a polyester rich skin. Then, Electron Spectroscopy for Chemical Analysis (ESCA) and Fourier Transformed Infrared Attenuated Total Reflectance (FTIR-ATR) analyses are conducted to evaluate semi-quantitatively the polyester surface enrichment. In the range of available shear rates, the phase separation is mainly driven by the molecular weight of polycaprolactone, linked to its molten state viscosity. Three zones of surface enrichment, dependent on the molecular weights, are identified. Above 60,000 g·mol,1, no surface enrichment could be detected; below 37,000 g·mol,1, the phase separation occurs with no dependence on the processing conditions; between these two limits, the phase separation depends on both, the formulation and the processing conditions. A correlation between the rheological measurements and the phase separation is given. A predictive criterion based on the viscous behavior of the blend is established. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source] In situ generated diphenylsiloxane-polyimide adduct-based nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 1 2005Manisha G. Goswami Arylsiloxane was incorporated into polyimide (PI) via electronic interaction with polyamic acid (PAA)/PI, and a wide spectrum of properties were evaluated for different compositions. The samples prepared with relatively low concentrations (0.0001,0.1%) of oligomers showed unusual synergism, which is attributed to the generation of nanostructures dispersed in the continuous PI matrix. The incorporation of siloxane with bulky phenyl groups contributed to enhanced thermal stability as determined by thermogravimetric analysis. Water uptake and methanol absorption by these composites were evaluated and correlated with the underlying micro- and nanostructures. Fourier Transform Infrared (FTIR) spectroscopy was used to elucidate the probable reaction mechanism (including in situ polymerization of arylsilanol), and to study the synthetic aspects associated with the molecular composites and nanocomposites formation. POLYM. ENG. SCI., 45:142,152, 2005. © 2004 Society of Plastics Engineers [source] Recycling of silicone rubber waste: Effect of ground silicone rubber vulcanizate powder on the properties of silicone rubberPOLYMER ENGINEERING & SCIENCE, Issue 2 2003Arun Ghosh The silicone rubber vulcanizate powder (SVP) obtained from silicone rubber by mechanical grinding exists in a highly aggregated state. The particle size distribution of SVP is broad, ranging from 2 µm to 110 µm with an average particle size of 33 µm. X-ray Photoelectron Spectroscopy (XPS) and Infrared (IR) Spectroscopy studies show that there is no chemical change on the rubber surface following mechanical grinding of the heat-aged (200°C/10 days) silicone rubber vulcanizate. Addition of SVP in silicone rubber increases the Mooney viscosity, Mooney scorch time, shear viscosity and activation energy for viscous flow. Measurement of curing characteristics reveals that incorporation of SVP into the virgin silicone rubber causes an increase in minimum torque, but marginal decrease in maximum torque and rate constant of curing. However, the activation energy of curing shows an increasing trend with increasing loading of SVP. Expectedly, incorporation of SVP does not alter the glass-rubber transition and cold crystallization temperatures of silicone rubber, as observed in the dynamic mechanical spectra. It is further observed that on incorporation of even a high loading of SVP (i.e., 60 phr), the tensile and tear strength of the silicone rubber are decreased by only about 20%, and modulus dropped by 15%, while the hardness, tension set and hysteresis loss undergo marginal changes and compression stress-relaxation is not significantly changed. Atomic Force Microscopy studies reveal that incorporation of SVP into silicone rubber does not cause significant changes in the surface morphology. [source] |