Home About us Contact | |||
Influx Rates (influx + rate)
Selected AbstractsDynamics of metal subcellular distribution and its relationship with metal uptake in marine musselsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2005Tania Y-T. Abstract We examined the dynamics of subcellular distribution of metals (Cd, Ag, and Zn) in the marine green mussel Perna viridis by partitioning the metals into the insoluble fraction (IF), heat-sensitive proteins (HSP), and metallothionein-like proteins (MTLP) during metal uptake and elimination. Variations in metal uptake and elimination then were correlated with the subcellular distributions of these metals. The IF and HSP were the first ligands to bind with the metals during the dissolved exposure, and more metals were found in the HSP when the metal influx rate was higher. However, to minimize toxicity, metals were redistributed from HSP to MTLP afterwards. The subcellular distribution of metals was dependent of the exposure route in the mussels. During dietary metal exposure, the metals attained equilibrium before they were assimilated and the metal assimilation efficiency was independent of the metal partitioning in different subcellular fractions. During the efflux, metals in the soluble fraction mediated depuration, whereas metals in the insoluble fraction acted as a final storage pool. Redistribution also may occur between the metal-sensitive and inactive pools without significant depuration as a secondary protective mechanism. We further demonstrated that the higher efflux rate of Ag and Cd was related to a higher partitioning in the MTLP and a lower partitioning in the IF. Our study shows that subcellular pools other than MTLP were involved in immediate metal handling in the bivalves. The wide dynamics of subcellular metal distribution suggests that the relevance of individual subcellular fractions is dependent on the exposure pathway. [source] Kinetic uptake of bioavailable cadmium, selenium, and zinc by Daphnia magnaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2002Ri-Qing Yu Abstract Kinetic uptake of Cd, Se(IV), and Zn by Daphnia magna from the dissolved phase was determined using radiotracer techniques in moderately hard water. The metal influx rate and distribution in the soft tissue and the exoskeleton of the daphnids as influenced by metal concentration, inorganic ligands including pH, Ca2+ and SO42,, and body size were quantified. When the metal concentrations were <180 nM for Cd and <769 nM for Zn, the concentration factor in daphnids increased linearly within the 12 h of exposure. At a higher concentration, apparent steady state was reached after 3 h of exposure. Cadmium and Zn distribution in the soft tissues was not affected by the total ambient concentrations, whereas Se distribution in the soft tissue decreased by 7 to 10% with increasing Se concentration from 16 to 643 nM. A linear positive power relationship was found between the influx rates of the metals and the ambient concentrations. The concentration factor for Se, however, decreased significantly with increasing Se concentration in water. The influx rate of metals was inversely related to the body size in a power function. When the pH in ambient water increased from 5.0 to 7.0, the influx rate of Cd, Se, and Zn increased by 2.9, 16.6, and 4.1 times, respectively. The influx rates of Cd, Se, and Zn decreased by 6.9, 8.7, and 4.4 times, respectively, with an increase in Ca2+ concentration from 0.6 to 5.1 mM. In contrast, the uptake rates of all three metals were not significantly affected by the SO42, concentration. The majority of accumulated Se was distributed in the soft tissues after 12 h of exposure, whereas Cd and Zn were about evenly distributed in the soft tissue and exoskeleton. Any changes in pH, Ca2+, and SO42, concentrations did not apparently affect their distributions in the daphnids. Our study provides important kinetic data necessary for delineating the exposure routes and for further development of the biotic ligand model in Daphnia. Using a bioenergetic-based kinetic model, we showed that the dissolved uptake is dominant for Zn accumulation (>50%). For Cd and Se, dietary exposure is dominant when the bioconcentration factors of these metals in phytoplankton are at the high end. [source] Seasonal field metabolic rate and dietary intake in Arabian Babblers (Turdoides squamiceps) inhabiting extreme desertsFUNCTIONAL ECOLOGY, Issue 5 2000A. Anava Abstract 1.,Arabian Babblers (Turdoides squamiceps Cretzsch.; mean adult body mass = 72·5 g) inhabit extreme deserts of Israel. They consume invertebrates and fruits and, at least at our study site, do not drink. It was hypothesized that babblers (1) in general, use relatively less energy and water than other birds of its body mass; and (2) consume a more water-rich diet (mainly fruits) in summer and more energy-rich diet (mainly invertebrates) in winter. Doubly labelled water was used to determine seasonal field metabolic rate (FMR) and water influx rate (WIR) and to estimate dietary selection in free-living Arabian Babblers. 2.,Babblers in winter weighed significantly more than in summer, and males weighed more than females in both seasons. Tritiated water (TOH) space, as a proportion of body mass, was higher in males than in females in summer but no difference between sexes was found in winter. Males in summer had a higher TOH space, proportionally, than males in winter but there was no difference between seasons in females. Mass-specific WIR did not differ between sexes in any season and averaged 0·475 ml g,1 d,1 in winter which was significantly higher than the 0·283 ml g,1 d,1 in summer. 3.,The mean daily energy expenditure of the babblers did not differ either between seasons or between sexes within seasons and averaged 1·61 kJ g,1 d,1 in winter and 1·68 kJ g,1 d,1 in summer. It was calculated that each babbler consumed an average of 5·09 g dry matter invertebrates and 1·83 g dry matter fruits in summer (for a 68·2-g bird; mean adult body mass in summer) and 3·49 g dry matter invertebrates and 6·61 g dry matter fruits in winter (for a 76·9-g bird; mean adult body mass in winter). 4.,When compared with other avian species, FMR and WIR of babblers were lower than bird species in general, but were similar to those of other desert birds. It was calculated that proportional dietary intake, on a dry matter basis, included 0·79 insects and 0·21 fruits in summer and 0·35 insects and 0·65 fruits in winter. Therefore, the babblers consumed a relatively energy-rich diet in summer and water-rich diet in winter which refuted our hypothesis. Most of the metabolizable energy was provided by invertebrates in both seasons; invertebrates provided more water in summer but fruits provided more in winter. [source] Site-specific contribution of proton-coupled folate transporter/haem carrier protein 1 in the intestinal absorption of methotrexate in ratsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 7 2009Tomoharu Yokooji Abstract Objectives Methotrexate is reportedly a substrate for proton-coupled folate transporter/haem carrier protein 1 (PCFT/HCP1) and reduced folate carrier 1 (RFC1). In this study, we examined the contribution of PCFT/HCP1 and RFC1 in the intestinal absorption of methotrexate in rats. Methods Western blot analysis was carried out to evaluate the protein levels of PCFT/HCP1 and multidrug resistance-associated protein 2 in brush-border membrane of rat small intestine. Mucosal uptake of methotrexate was studied in the rat everted small intestine and an in-situ intestinal perfusion study of methotrexate was also carried out in rats. Key findings In transport studies using everted intestine, the mucosal methotrexate influx rate in proximal intestine at pH 5.5 was significantly greater than that at pH 7.4. Coadministration of folate or its analogues, such as folinate and 5-methyltetrahydrofolate, substrates for both PCFT/HCP1 and RFC1, significantly suppressed the methotrexate influx at pH 5.5, whereas thiamine pyrophosphate, an inhibitor for RFC1 alone, exerted no significant effect. Western blot analysis showed higher PCFT/HCP1 expression in proximal than distal small intestine. In distal small intestine, methotrexate influx rate was low and was not pH dependent. Also, folate and its analogues exerted no significant effect on methotrexate absorption. Conclusions Based on the present and our previous results, the site-specific contributions of various transporters including PCFT/HCP1 in methotrexate intestinal absorption were discussed. The variation in luminal pH and the involvement of multiple transporters in methotrexate absorption may cause variation in oral bioavailability among patients. [source] Toxicokinetics of sediment-associated polybrominated diphenylethers (flame retardants) in benthic invertebrates (Lumbriculus variegatus, oligochaeta)ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2004Matti T. Leppänen Abstract Polybrominated diphenylethers (PBDEs) are ubiquitous environmental contaminants showing rapid temporal increase in some sample types. The compounds are known to biomagnify in aquatic food webs and are assumed to archive into sediments and soils. Currently, no direct evidence indicates whether sediment-associated PBDEs are available for biota. The aim of the present study was to explore the uptake and elimination of two common congeners (47 and 99) in sediment-inhabiting invertebrates to shed light on possible bioavailability of sediment-associated PBDEs. Two clean lake sediments were spiked with environmentally relevant concentrations of 14C-labeled tetra- and pentabromo diphenylether, and oligochaetes (Lumbriculus variegatus) were exposed for three or four weeks to allow kinetic accumulation calculations. Subsequent depuration tests were performed after three weeks of exposure to obtain depuration rates. Both congeners were clearly bioavailable, and only slight differences in steady-state tissue concentrations were found between the four sediment-ingesting oligochaete treatments (biota sediment accumulation factors [BSAFs], 3.0,3.7). The tetrabromo diphenylether-exposed oligochaetes that did not ingest sediment had clearly lower influx rates (0.1 vs 1,3 nmol h -1) than sediment-ingesting worms. Also, the estimated BSAF (1.8) was statistically different from that of the sediment-ingesting oligochaetes. These findings support the significance of feeding behavior in bioaccumulation of very hydrophobic organic contaminants. Depuration of both congeners was biphasic, indicating two kinetically different compartments in L. variegatus. Compartment A made up 73 to 92% of total radioactivity in tissues and had relatively fast depuration rates (half-lives, 10.5,47.5 h); the smaller compartment B had very slow depuration rates. No significant biotransformation of PBDEs was evident. The present study clearly demonstrates that the sediment-associated PBDEs, like other hydrophobic organic contaminants of environmental concern, are not totally sequestered from sediment-inhabiting oligochaetes and are subject to trophic transfer. [source] Kinetic uptake of bioavailable cadmium, selenium, and zinc by Daphnia magnaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2002Ri-Qing Yu Abstract Kinetic uptake of Cd, Se(IV), and Zn by Daphnia magna from the dissolved phase was determined using radiotracer techniques in moderately hard water. The metal influx rate and distribution in the soft tissue and the exoskeleton of the daphnids as influenced by metal concentration, inorganic ligands including pH, Ca2+ and SO42,, and body size were quantified. When the metal concentrations were <180 nM for Cd and <769 nM for Zn, the concentration factor in daphnids increased linearly within the 12 h of exposure. At a higher concentration, apparent steady state was reached after 3 h of exposure. Cadmium and Zn distribution in the soft tissues was not affected by the total ambient concentrations, whereas Se distribution in the soft tissue decreased by 7 to 10% with increasing Se concentration from 16 to 643 nM. A linear positive power relationship was found between the influx rates of the metals and the ambient concentrations. The concentration factor for Se, however, decreased significantly with increasing Se concentration in water. The influx rate of metals was inversely related to the body size in a power function. When the pH in ambient water increased from 5.0 to 7.0, the influx rate of Cd, Se, and Zn increased by 2.9, 16.6, and 4.1 times, respectively. The influx rates of Cd, Se, and Zn decreased by 6.9, 8.7, and 4.4 times, respectively, with an increase in Ca2+ concentration from 0.6 to 5.1 mM. In contrast, the uptake rates of all three metals were not significantly affected by the SO42, concentration. The majority of accumulated Se was distributed in the soft tissues after 12 h of exposure, whereas Cd and Zn were about evenly distributed in the soft tissue and exoskeleton. Any changes in pH, Ca2+, and SO42, concentrations did not apparently affect their distributions in the daphnids. Our study provides important kinetic data necessary for delineating the exposure routes and for further development of the biotic ligand model in Daphnia. Using a bioenergetic-based kinetic model, we showed that the dissolved uptake is dominant for Zn accumulation (>50%). For Cd and Se, dietary exposure is dominant when the bioconcentration factors of these metals in phytoplankton are at the high end. [source] Lack of an osmotic constraint on intake rate of the eastern curlew Numenius madagascariensisJOURNAL OF AVIAN BIOLOGY, Issue 4 2006Rachel Blakey Rates of food intake in animals consuming abundant prey can be constrained by the rates of digestion or excretion of ingested substances, such as salt, particularly so in the animals that regularly migrate between freshwater and saltwater environments. We tested this hypothesis in a long-distance migrant shorebird, the eastern curlew Numenius madagascariensis (suborder Charadrii), foraging on intertidal decapods in eastern Australia. We predicted that if food intake rates are constrained osmotically, individuals with access to freshwater and less saline prey (FW group) would have higher rates of food and water intake than individuals with seawater-only access (SW group). Food intake rates did not differ between the FW and SW groups (0.14 g ash-free dry mass min,1), nor did the water influx rates (0.75 g,min,1). Salt intake rates were lower at FW sites (19.3 versus 23.3 mg NaCl min,1) and overall they were similar to those of marine birds. Food intake rate in the eastern curlew appeared limited by digestive rather than by osmoregulatory capacity. [source] Dietary Na does not reduce dietary Cu uptake by juvenile rainbow troutJOURNAL OF FISH BIOLOGY, Issue 2 2005V. A. Kjoss Rainbow trout Oncorhynchus mykiss fry in moderately hard water were exposed to control or high levels of dietary Cu (c. 6 and 580 ug Cu g food,1) at one of three levels of Na (1·5, 3·0 or 4·5%) in the diet, i.e. six experimental groups. Fish were fed a 4% body mass ration daily for 28 days and 10 individuals from each group were sampled every 7 days. Concentrations of Cu and Na were measured in the gills, liver, gut and remaining carcass of sampled fish. Growth was not affected and no consistent differences were found in mass, total lengths (LT) or indices of body condition among any of the groups on any sampling day. Copper concentration was significantly higher in tissues of Cu-exposed groups, although within treatment types (control Cu v. high Cu diet), it did not differ consistently among groups that received different levels of dietary Na. Tissue Na concentration did not differ among any of the groups and did not show any marked changes over time. In Cu-exposed groups, the proportion of total body Cu burden contained in the liver approximately doubled over time, from c. 30% on day 7 to c. 60% on day 28. In unexposed fish, the liver maintained c. 25% of the total Cu burden throughout the experiment. In contrast, the proportion of the total body Cu burden contained in the gut decreased somewhat over time in Cu-exposed fish, from c. 40% on day 7 to c. 30% on day 28, and remained fairly stable at c. 25,30% in control groups, i.e. approximately equal to liver values. In all groups, the carcass contained by far the largest portion of the total Na content (>80%). Measurements made 36 h post-feeding indicated that all six groups had much higher Na efflux relative to influx, suggesting that the fish were eliminating excess Na taken up from the diet, and differences in Na influx rates were small. Na efflux rate was significantly higher in the high Cu and high Na group than in the high Cu and low Na group. The results indicate that at the concentrations used in this experiment, dietary Na has little effect on dietary Cu uptake by juvenile rainbow trout, and dietary Cu has little effect on Na homeostasis. [source] Different mechanisms influencing permeation of PDGF-AA and PDGF-BB across the blood,brain barrierJOURNAL OF NEUROCHEMISTRY, Issue 1 2003Abba J. Kastin Abstract Platelet-derived growth factor (PDGF) exerts neurotrophic and neuromodulatory effects on the CNS. To determine the permeability of the blood,brain barrier (BBB) to PDGF, we examined the blood-to-brain influx of radioactively labeled PDGF isoforms (PDGF-AA and PDGF-BB) by multiple-time regression analysis after intravenous (i.v.) injection and by in-situ perfusion, and also determined the physicochemical characteristics which affect their permeation across the BBB, including lipophilicity (measured by octanol:buffer partition coefficient), hydrogen bonding (measured by differences in octanol : buffer and isooctane : buffer partition coefficients), serum protein binding (measured by capillary electrophoresis), and stability of PDGF in blood 10 min after i.v. injection (measured by HPLC). After i.v. bolus injection, neither 125I-PDGF-AA nor 125I-PDGF-BB crossed the BBB, their influx rates being similar to that of the vascular marker 99mTc-albumin. 125I-PDGF-AA degraded significantly faster in blood than 125I-PDGF-BB. PDGF-BB, however, was completely bound to a large protein in serum whereas PDGF-AA showed no binding. Thus, degradation might explain the poor blood-to-brain influx of PDGF-AA, whereas protein binding could explain the poor influx of circulating PDGF-BB. Despite their lack of permeation in the intact mouse, both 125I-PDGF-AA and 125I-PDGF-BB entered the brain by perfusion in blood-free buffer, and the significantly faster rate of 125I-PDGF-AA than 125I-PDGF-BB may be explained by the lower hydrogen bonding potential of 125I-PDGF-AA. Thus, the lack of significant distribution of PDGF from blood to brain is not because of the intrinsic barrier function of the BBB but probably because of degradation and protein binding. Information from these studies could be useful in the design of analogues for delivery of PDGF as a therapeutic agent. [source] |