Inflammatory Signaling (inflammatory + signaling)

Distribution by Scientific Domains


Selected Abstracts


Inflammatory Signaling in Pulmonary Arterial Hypertension: The Controversial Role of CRP, and the Search for New Therapies

CARDIOVASCULAR THERAPEUTICS, Issue 1 2010
Paul M. Maciocia
A greater understanding of the mechanisms behind the development of Pulmonary Arterial Hypertension remains crucial [source]


Fc, receptor I activation induces leukocyte recruitment and promotes aggravation of glomerulonephritis through the FcR, adaptor

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2007
Yutaka Kanamaru
Abstract Myeloid cells bear Fc receptors (FcR) that mediate inflammatory signaling through the ITAM-containing FcR, adaptor. They express FcR,-associated Fc,RI, which modulate either activating or inhibitory signaling depending on the type of ligand interaction. The role of Fc,RI, in disease progression remains unknown, notably in IgA nephropathy (IgAN), one of major causes of end-stage renal disease, in which large amounts of circulating IgA-immune complexes (IC) may mediate receptor activation. To analyze the involvement of Fc,RI activation in glomerulonephritis (GN), we generated Tg mice expressing a mutated, signaling-incompetent, human Fc,RIR209L that cannot associate with FcR,. Like Fc,RIwt -Tg mice, they developed mesangial IgA deposits but not macrophage infiltration. Fc,RI activation in Fc,RIwt, but not in Fc,RIR209L, Tg mice resulted in marked inflammation with severe proteinuria and leukocyte infiltration in spontaneous IgAN or anti-glomerular basement membrane Ab-induced GN models. Receptor triggering of syngenically transferred Fc,RIwt Tg macrophages into non-Tg animals induced their recruitment into injured kidneys during GN development. Fc,RIwt cross-linking on macrophages activated MAP kinases and production of TNF-, and MCP-1. Moreover, IgA-IC from IgAN patients activated Fc,RI and induced TNF-, production. Thus, Fc,RI activation mediates GN progression by initiating a cytokine/chemokine cascade that promotes leukocyte recruitment and kidney damage. [source]


Generation of Bioactive Materials with Rapid Self-Assembling Resorcinarene-Peptides

ADVANCED MATERIALS, Issue 28 2009
Mirren Charnley
Adhesive resorcinarene molecules rapidly self-assemble on a wide range of material surfaces. We have created resorcinarenes that contain a biologically active terminal GKP- D -V anti-inflammatory peptide by a rapid "dip-and-dry" forming method. The growth of neural Schwann and fibroblast cells on a layer of resorcinarene-GKP- D -V demonstrate inhibition of inflammatory signaling. [source]


Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders

JOURNAL OF NEUROCHEMISTRY, Issue 5 2010
Rommy Von Bernhardi
J. Neurochem. (2010) 112, 1099,1114. Abstract Among multiple structural and functional brain changes, aging is accompanied by an increase of inflammatory signaling in the nervous system as well as a dysfunction of the immune system elsewhere. Although the long-held view that aging involves neurocognitive impairment is now dismissed, aging is a major risk factor for neurodegenerative diseases such as Alzheimer`s disease, Parkinson`s disease and Huntington's disease, among others. There are many age-related changes affecting the brain, contributing both to certain declining in function and increased frailty, which could singly and collectively affect neuronal viability and vulnerability. Among those changes, both inflammatory responses in aged brains and the altered regulation of toll like receptors, which appears to be relevant for understanding susceptibility to neurodegenerative processes, are linked to pathogenic mechanisms of several diseases. Here, we review how aging and pro-inflammatory environment could modulate microglial phenotype and its reactivity and contribute to the genesis of neurodegenerative processes. Data support our idea that age-related microglial cell changes, by inducing cytotoxicity in contrast to neuroprotection, could contribute to the onset of neurodegenerative changes. This view can have important implications for the development of new therapeutic approaches. [source]