Inflammatory Cell Recruitment (inflammatory + cell_recruitment)

Distribution by Scientific Domains


Selected Abstracts


CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice,

HEPATOLOGY, Issue 4 2010
Tomonori Aoyama
Chronic liver disease is associated with hepatocyte injury, inflammation, and fibrosis. Chemokines and chemokine receptors are key factors for the migration of inflammatory cells such as macrophages and noninflammatory cells such as hepatic stellate cells (HSCs). The expression of CX3CR1 and its ligand, CX3CL1, is up-regulated in chronic liver diseases such as chronic hepatitis C. However, the precise role of CX3CR1 in the liver is still unclear. Here we investigated the role of the CX3CL1-CX3CR1 interaction in a carbon tetrachloride (CCl4),induced liver inflammation and fibrosis model. CX3CR1 was dominantly expressed in Kupffer cells in the liver. In contrast, the main source of CX3CL1 was HSCs. Mice deficient in CX3CR1 showed significant increases in inflammatory cell recruitment and cytokine production [including tumor necrosis factor , (TNF-,); monocyte chemoattractant protein 1; macrophage inflammatory protein 1,; and regulated upon activation, normal T cell expressed, and secreted (RANTES)] after CCl4 treatment versus wild-type (WT) mice. This suggested that CX3CR1 signaling prevented liver inflammation. Kupffer cells in CX3CR1-deficient mice after CCl4 treatment showed increased expression of TNF-, and transforming growth factor , and reduced expression of the anti-inflammatory markers interleukin-10 (IL-10) and arginase-1. Coculture experiments showed that HSCs experienced significantly greater activation by Kupffer cells from CCl4 -treated CX3CR1-deficient mice versus WT mice. Indeed, augmented fibrosis was observed in CX3CR1-deficient mice versus WT mice after CCl4 treatment. Finally, CX3CL1 treatment induced the expression of IL-10 and arginase-1 in WT cultured Kupffer cells through CX3CR1, which in turn suppressed HSC activation. Conclusion: The CX3CL1-CX3CR1 interaction inhibits inflammatory properties in Kupffer cells/macrophages and results in decreased liver inflammation and fibrosis. (Hepatology 2010) [source]


Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury

INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 6 2007
Dieudonnée Togbe
Summary Recent studies on endotoxin/lipopolysaccharide (LPS)-induced acute inflammatory response in the lung are reviewed. The acute airway inflammatory response to inhaled endotoxin is mediated through Toll-like receptor 4 (TLR4) and CD14 signalling as mice deficient for TLR4 or CD14 are unresponsive to endotoxin. Acute bronchoconstriction, tumour necrosis factor (TNF), interleukin (IL)-12 and keratinocyte-derived chemokine (KC) production, protein leak and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adaptor protein (TIRAP), but independent of TIR-domain-containing adaptor-inducing interferon-beta (TRIF). In particular, LPS-induced TNF is required for bronchoconstriction, but dispensable for inflammatory cell recruitment. Lipopolysaccharide induces activation of the p38 mitogen-activated protein kinase (MAPK). Inhibition of pulmonary MAPK activity abrogates LPS-induced TNF production, bronchoconstriction, neutrophil recruitment into the lungs and broncho-alveolar space. In conclusion, TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin are dependent on TLR4/CD14/MD2 expression using the adapter proteins TIRAP and MyD88, while TRIF, IL-1R1 or IL-18R signalling pathways are dispensable. Further downstream in this axis of signalling, TNF blockade reduces only acute bronchoconstriction, while MAPK inhibition abrogates completely endotoxin-induced inflammation. [source]


Anti-inflammatory responses and oxidative stress in Nippostrongylus brasiliensis -induced pulmonary inflammation

PARASITE IMMUNOLOGY, Issue 1 2002
Kathryn S. McNeil
summary Migration of L3 larvae of Nippostrongylus brasiliensis through the lungs of the rat, during primary infection, was studied at 24 h, 72 h and 8 days. At 24 h p.i., there was evidence of damage to lung epithelial cells and microvasculature, with increased protein and ,-glutamyl transpeptidase in the bronchoalveolar lavage (BAL) fluid. However, there was little evidence of inflammatory cell recruitment. At 24 h p.i., there was a significant reduction in the inflammatory cytokine tumour necrosis factor ,. Superoxide (O2,·) production was also reduced, accompanied by an increase in superoxide dismutase activity. Lipid peroxidation was reduced at 24 h p.i. and L3 larvae were shown to possess high levels of glutathione compared to host lung tissue. Nitric oxide, detected as nitrite, was produced in BAL fluid, and inducible nitric oxide synthase protein was increased by 72 h p.i. There was evidence of peroxynitrite production throughout the infection period with specific protein bands nitrosylated at 75, 30 and 25 kDa. It appears that despite early evidence of lung damage, the inflammation was reduced in response to L3 larvae of N. brasiliensis. [source]


Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia-inducible transcription factor 1,/vascular endothelial growth factor,mediated pathway in immunodeficient mice

ARTHRITIS & RHEUMATISM, Issue 10 2009
Manuel J. del Rey
Objective Hyperplasia and phenotypic changes in fibroblasts are often observed in chronic inflammatory lesions, and yet the autonomous pathogenic contribution of these changes is uncertain. The purpose of this study was to analyze the intrinsic ability of fibroblasts from chronically inflamed synovial tissue to drive cell recruitment and angiogenesis. Methods Fibroblasts from patients with rheumatoid arthritis (RA) or osteoarthritis (OA), as well as fibroblasts from healthy synovial tissue and healthy skin, were cultured and subcutaneously engrafted into immunodeficient mice. Cell infiltration and angiogenesis were analyzed in the grafts by immunohistochemical studies. The role of vascular endothelial growth factor (VEGF), CXCL12, and hypoxia-inducible transcription factor 1, (HIF-1,) in these processes was investigated using specific antagonists or small interfering RNA (siRNA),mediated down-regulation of HIF-1, in fibroblasts. Results Inflammatory (OA and RA) synovial fibroblasts, compared with healthy dermal or synovial tissue fibroblasts, induced a significant enhancement in myeloid cell infiltration and angiogenesis in immunodeficient mice. These activities were associated with increased constitutive and hypoxia-induced expression of VEGF, but not CXCL12, in inflammatory fibroblasts compared with healthy fibroblasts. VEGF and CXCL12 antagonists significantly reduced myeloid cell infiltration and angiogenesis. Furthermore, targeting of HIF-1, expression by siRNA or of HIF-1, transcriptional activity by the small molecule chetomin in RA fibroblasts significantly reduced both responses. Conclusion These results demonstrate that chronic synovial inflammation is associated with stable fibroblast changes that, under hypoxic conditions, are sufficient to induce inflammatory cell recruitment and angiogenesis, both of which are processes relevant to the perpetuation of chronic inflammation. [source]


CCR5 is involved in resolution of inflammation in proteoglycan-induced arthritis

ARTHRITIS & RHEUMATISM, Issue 10 2009
Paul D. Doodes
Objective CCR5 and its ligands (CCL3, CCL4, and CCL5) may play a role in inflammatory cell recruitment into the joint. However, it was recently reported that CCR5 on T cells and neutrophils acts as a decoy receptor for CCL3 and CCL5 to assist in the resolution of inflammation. The aim of this study was to determine whether CCR5 functions as a proinflammatory or antiinflammatory mediator in arthritis, by examining the role of CCR5 in proteoglycan (PG),induced arthritis (PGIA). Methods Arthritis was induced by immunizing wild-type (WT) and CCR5-deficient (CCR5,/,) BALB/c mice with human PG in adjuvant. The onset and severity of PGIA were monitored over time. Met-RANTES was used to block CCR5 in vivo. Arthritis was transferred to SCID mice, using spleen cells from arthritic WT and CCR5,/, mice. The expression of cytokines and chemokines was measured by enzyme-linked immunosorbent assay. Results In CCR5,/, mice and WT mice treated with the CCR5 inhibitor Met-RANTES, exacerbated arthritis developed late in the disease course. The increase in arthritis severity in CCR5,/, mice correlated with elevated serum levels of CCL5. However, exacerbated arthritis was not intrinsic to the CCR5,/, lymphoid cells, because the arthritis that developed in SCID mouse recipients was similar to that in WT and CCR5,/, mice. CCR5 expression in the SCID mouse was sufficient to clear CCL5, because serum levels of CCL5 were the same in SCID mouse recipients receiving cells from either WT or CCR5,/, mice. Conclusion These data demonstrate that CCR5 is a key player in controlling the resolution of inflammation in experimental arthritis. [source]


Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins

ARTHRITIS & RHEUMATISM, Issue 8 2009
Nestor E. Rulli
Objective Alphaviruses such as chikungunya virus, Sindbis virus, o'nyong-nyong virus, Mayaro virus, and Ross River virus (RRV), are commonly associated with arthralgias and overt arthritides worldwide. Understanding the processes by which arthritogenic viruses cause disease is a prerequisite in the quest for better treatments. In this regard, we have recently established that monocyte/macrophages are mediators of alphavirus-induced arthritis in mice. We hypothesized that chemokines associated with monocyte/macrophage recruitment may play an important role in disease. The aim of the present investigations was to determine whether bindarit, an inhibitor of monocyte chemotactic protein (MCP) synthesis, could ameliorate alphavirus-induced rheumatic disease in mice. Methods Using our recently developed mouse model of RRV-induced arthritis, which has many characteristics of RRV disease (RRVD) in humans, the effects of bindarit treatment on RRVD in mice were determined via histologic analyses, immunohistochemistry, flow cytometry, real-time polymerase chain reaction analysis, enzyme-linked immunosorbent assay, and electrophoretic mobility shift assay. Results Bindarit-treated RRV-infected mice developed mild disease and had substantially reduced tissue destruction and inflammatory cell recruitment as compared with untreated RRV-infected mice. The virus load in the tissues was not affected by bindarit treatment. Bindarit exhibited its activity by down-regulating MCPs, which in turn led to inhibition of cell infiltration and lower production of NF-,B and tumor necrosis factor ,, which are involved in mediating tissue damage. Conclusion Our data support the use of inhibitors of MCP production in the treatment of arthritogenic alphavirus syndromes and suggest that bindarit may be useful in treating RRVD and other alphavirus-induced arthritides in humans. [source]


Cigarette smoke suppresses in vitro allergic activation of mouse mast cells

CLINICAL & EXPERIMENTAL ALLERGY, Issue 5 2009
E. Mortaz
Summary Background Mast cells are important effector cells in innate or acquired immunity that contribute to host defence. Excessive activation of mast cells can result in the development of allergic diseases, including atopic asthma. Mast cell activation by IgE and specific antigen induces the cells to release spasmogenic, vasoactive and pro-inflammatory mediators, which enhance airway smooth muscle contraction, vascular permeability and inflammatory cell recruitment. Recently, we have demonstrated that exposure of mast cells to cigarette smoke medium (CSM) triggered mast cells to produce chemokines. On the other hand, smoking may decrease the risk of allergic sensitization, which could be explained by a reduced IgE production or a diminished response of mast cells to activation of the IgE receptor. Objective In this study, we investigated the effect of CSM on the allergic activation of mast cells through IgE and antigen. Methods Primary cultured murine mast cells were exposed to CSM and activated with IgE and antigen or lipopolysaccharide (LPS). The release of granules, production of leukotrienes, chemokines and cytokines was determined in the supernatants by ELISA. The effect of CSM exposure on intracellular signalling, especially the nuclear factor (NF)-,B and extracellular signal-regulated kinase (Erk)1/2 pathways, was analysed by Western blotting. Results CSM suppressed IgE-mediated degranulation and cytokine release, but no effect was observed on leukotriene release. CSM induced phosphorylation of Erk1/2 in mast cells. In CSM-exposed mast cells, activating transcription factor (ATF)-1 was phosphorylated after stimulation with IgE/Ag. LPS-activated mast cells were not influenced by CSM. Conclusion Our study suggests that exposure to cigarette smoke may lead to a reduced allergic activation of mast cells without affecting their response to activation via e.g. bacterial-derived LPS. [source]


Interactions of tachykinin receptor antagonists with lipopolysaccharide-induced airway inflammation in mice

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 9 2004
M Veron
Summary 1.,Several observations suggest that tachykinins are involved in the pathogenesis of bronchopulmonary alterations. We have investigated the effect of antagonists for tachykinin NK1 (SR 140333), NK2 (SR 48968) or NK3 (SR 142801) receptors on inflammatory cell recruitment, tumour necrosis factor (TNF)-, and interleukin (IL)-6 release and matrix metalloproteinase (MMP)-9 activity in the bronchoalveolar lavage fluid (BALF) of mice exposed to lipopolysaccharide (LPS; 100 µg/mL aerosol for 30 min). 2.,Treatment of mice with a combination of SR 140333 and SR 48968 (10,6 mol/L, aerosol) significantly reduced the increase in the number of total cells and neutrophils and MMP-9 activity in the BALF of mice 2.5 h after LPS exposure. Treatment with the NK3 antagonist SR 142801 (10,6 mol/L, aerosol) did not inhibit the influx of neutrophils, but markedly reduced the increase in TNF-, and IL-6 levels at 2.5 h and MMP-9 activity at 20 h. 3.,These results show that the three tachykinin receptor antagonists may interfere with the development of airway inflammation, namely neutrophilia, TNF-, release or MMP-9 activity in the BALF of mice exposed to LPS and suggest that not only NK1 and NK2 receptors, but also NK3 receptors are involved in the modulation of the inflammatory response and airway remodelling. [source]