Home About us Contact | |||
Inferior Temporal (inferior + temporal)
Terms modified by Inferior Temporal Selected AbstractsDistributed source modeling of language with magnetoencephalography: Application to patients with intractable epilepsyEPILEPSIA, Issue 10 2009Carrie R. McDonald Summary Purpose:, To examine distributed patterns of language processing in healthy controls and patients with epilepsy using magnetoencephalography (MEG), and to evaluate the concordance between laterality of distributed MEG sources and language laterality as determined by the intracarotid amobarbital procedure (IAP). Methods:, MEG was performed in 10 healthy controls using an anatomically constrained, noise-normalized distributed source solution (dynamic statistical parametric map, dSPM). Distributed source modeling of language was then applied to eight patients with intractable epilepsy. Average source strengths within temporoparietal and frontal lobe regions of interest (ROIs) were calculated, and the laterality of activity within ROIs during discrete time windows was compared to results from the IAP. Results:, In healthy controls, dSPM revealed activity in visual cortex bilaterally from ,80 to 120 ms in response to novel words and sensory control stimuli (i.e., false fonts). Activity then spread to fusiform cortex ,160,200 ms, and was dominated by left hemisphere activity in response to novel words. From ,240 to 450 ms, novel words produced activity that was left-lateralized in frontal and temporal lobe regions, including anterior and inferior temporal, temporal pole, and pars opercularis, as well as bilaterally in posterior superior temporal cortex. Analysis of patient data with dSPM demonstrated that from 350 to 450 ms, laterality of temporoparietal sources agreed with the IAP 75% of the time, whereas laterality of frontal MEG sources agreed with the IAP in all eight patients. Discussion:, Our results reveal that dSPM can unveil the timing and spatial extent of language processes in patients with epilepsy and may enhance knowledge of language lateralization and localization for use in preoperative planning. [source] Dipole Tracing Examination for the Electric Source of Photoparoxysmal Response Provoked by Half-Field StimulationEPILEPSIA, Issue 2000Kazuhiko Kobayashi Purpose: Dipole tracing (DT) is a computer-aidcd noninvasive method used to estimate the location of epileptic discharges from the scalp EEG. In DT equivalent current dipoles (ECDs), which rcflcct the electric source in the brain, are rcsponsible for the potential distribution on the scalp EEC. Thercfore, the DT method is useful to estimatc the focal paroxysmal discharges. In this study we examined the location of the clectric source of photoparoxysmal response (PPR) using scalpskull-brain dipolc tracing (SSB-DT) after hal[-field stimulation, which produced focal PPR on the scalp EEG. Methods: We studied 4 cases of photoscnsitive epilepsy. Wc performed 20 Hz red flicker and flickcring dot pattern half-ficld stimulation to provoke PPR. In this method, the loci of gcnerators corresponding to the paroxysmal discharges were estimated as ECDs by I - and 2-dipole analyses. Each location of the ECDs was estimated by iterative calculation. Algorithms minimizing the squarcd difference betwccn the electrical potentials recorded from the scalp EEG and those calculated theoretically from the voluntary dipoles were uscd. In the SSB model, the scalp shell was reconstructed from the helmet mcasurements, and the shapc of the skull and brain was 3-dimcnsionally reconstructed from CT images. A dipolarity larger than 98% w the accuracy of the estimation. We recorded thcir 2 I channel monopolar scalp EEG. Each spike was sampled analyzed at 10 points around the peaks of at least 10 spikes in each patient using the SSB-DT method. The ECDs were then supcrimposed on thc MRI of each palient to idcntify the more cxact anatomical region. Results: This study showed the location of cach focus and a dipolarity of greater than 98% in all cases, although the results from the 2-dipole method showed scattered location. We considered that the analyzed signals were generated from single source. PPR was elicitcd cross-lateral to the field stimulated. By red flicker half-field stimulation, EEG revealed eithcr focal spikes and waves in the contralatcral occipital, temporo-occipitel region, or diffuse spikes and wave complex bursts, sccn dominantly at the contralateral hcmisphere. The supcrimposed ESDs on MRI were located at the occipital or inferior temporal lobe. PPR, provoked by flickering dot pattern half-field stimulation, werc focal spikes and waves, mainly in the occipital, parieto-occipital region, or diffuse spikes and wave complcx bursts, seen dominantly at thc contralateral hcmiaphere. The ECDs of their PPRs were located in the occipital, inferior temporal, or inferior pirietal lobules on MRI. Conclusion: Our findings suggest that the inferior temporal and inferior parictal lobules which are important for the processing sequence of the visual system in addition to the occipital lobc, might he responsible for thc mechanism of PPR by half-ficld stimulation, espccially for electric source expansion. [source] Tuning for shape dimensions in macaque inferior temporal cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2005Greet Kayaert Abstract It is widely assumed that distributed bell-shaped tuning (e.g. Radial Basis functions) characterizes the shape selectivity of macaque inferior temporal (IT) neurons, analogous to the orientation or spatial frequency tuning found in early visual cortex. Demonstrating such tuning properties requires testing the responses of neurons for different values along dimensions of shape. We recorded the responses of single macaque IT neurons to variations of a rectangle and a triangle along simple shape dimensions, such as taper and axis curvature. The neurons showed systematic response modulation along these dimensions, with the greatest response, on average, to the highest values on the dimensions, e.g. to the most curved shapes. Within the range of values tested, the response functions were monotonic rather than bell-shaped. Multi-dimensional scaling of the neural responses showed that these simple shape dimensions were coded orthogonally by IT neurons: the degree and direction of responses modulation (i.e. the increase or decrease of responses along a dimension) was independent for the different dimensions. Furthermore, for combinations of curvature-related and other simple shape dimensions, the joint tuning was separable, that is well predicted by the product of the tuning for each of the dimensions. The independence of dimensional tuning may provide the neural basis for the independence of psychophysical judgements of multidimensional stimuli. [source] Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkeyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2000Akitoshi Hanazawa Abstract In the inferior temporal (IT) cortex of monkeys, which has been shown to play a critical role in colour discrimination, there are neurons sensitive to a narrow range of hues and saturation. By contrast, neurons in the retina and the parvocellular layer of the lateral geniculate nucleus (pLGN) encode colours in a way that does not provide explicit representation of hue or saturation, and the process by which hue- and saturation-selectivity is elaborated remains unknown. We therefore tested the colour-selectivity of neurons in the primary visual cortex (V1) and compared it with those of pLGN and IT neurons. Quantitative analysis was performed using a standard set of colours, systematically distributed within the CIE (Commission Internationale de l'Eclairage)-xy chromaticity diagram. Selectivity for hue and saturation was characterized by analysing response contours reflecting the overall distribution of responses across the chromaticity diagram. We found that the response contours of almost all pLGN neurons were linear and broadly tuned for hue. Many V1 neurons behaved similarly; nonetheless, a considerable number of V1 neurons had clearly curved response contours and were selective for a narrow range of hues or saturation. The relative frequencies of neurons exhibiting various selectivities for hue and saturation were remarkably similar in the V1 and IT cortex, but were clearly different in the pLGN. Thus, V1 apparently plays a very important role in the conversion of colour signals necessary for generating the elaborate colour selectivity observed in the IT cortex. [source] Medial temporal lobe activity at recognition increases with the duration of mnemonic delay during an object working memory taskHUMAN BRAIN MAPPING, Issue 11 2007Marco Picchioni Abstract Object working memory (WM) engages a disseminated neural network, although the extent to which the length of time that data is held in WM influences regional activity within this network is unclear. We used functional magnetic resonance imaging to study a delayed matching to sample task in 14 healthy subjects, manipulating the duration of mnemonic delay. Across all lengths of delay, successful recognition was associated with the bilateral engagement of the inferior and middle frontal gyri and insula, the medial and inferior temporal, dorsal anterior cingulate and the posterior parietal cortices. As the length of time that data was held in WM increased, activation at recognition increased in the medial temporal, medial occipito-temporal, anterior cingulate and posterior parietal cortices. These results confirm the components of an object WM network required for successful recognition, and suggest that parts of this network, including the medial temporal cortex, are sensitive to the duration of mnemonic delay. Hum Brain Mapp 2007. © 2006 Wiley-Liss, Inc. [source] Neural generators of ERPs linked with Necker cube reversalsPSYCHOPHYSIOLOGY, Issue 4 2009Michael A. Pitts Abstract Multistable perception occurs when a single physical stimulus leads to two or more distinct percepts that spontaneously switch (reverse). Previous ERP studies have reported reversal negativities and late positive components associated with perceptual reversals. The goal of the current study was to localize the neural generators of the reversal ERP components in order to evaluate their correspondence with previous fMRI results and to better understand their functional significance. A Necker-type stimulus was presented for brief intervals while subjects indicated their perceptions. Local auto-regressive average source analyses and dipole modeling indicated that sources for the reversal negativity were located in inferior occipital-temporal cortex. Generators of the late positive component were estimated to reside in inferior temporal and superior parietal regions. [source] |