Infection Studies (infection + studies)

Distribution by Scientific Domains


Selected Abstracts


Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice

CELLULAR MICROBIOLOGY, Issue 7 2007
Christelle M. Roux
Summary The virB operon, encoding a Type IV secretion system (T4SS), is essential for intracellular survival and persistent infection by Brucella spp. To better understand the role of the T4SS in evading host defence mechanisms and establishing chronic infection, we compared transcriptional profiles of the host response to infection with wild-type and virB mutant Brucella strains. Analysis of gene expression profiles in murine splenocytes 3 days after inoculation with wild-type Brucella strains revealed an inflammatory response, with a prominent upregulation of genes induced by both type I and type II interferons. Real-time RT-PCR showed that a group of genes from these pathways were induced by day 3 post infection and declined to baseline levels by day 7. In contrast, neither of the two virB mutant strains elicited a proinflammatory gene expression profile, demonstrating that the T4SS was required to trigger this response. Infection studies using type I interferon receptor knockout mice showed that a lack of type I interferon signalling did not affect Brucella replication during the first 4 weeks of infection. Thus, induction of type I interferons does not appear to be an essential mechanism by which the T4SS promotes persistent infection by Brucella. [source]


Phylogenetic relationships and pathogenicity of Colletotrichum acutatum isolates from grape in subtropical Australia

PLANT PATHOLOGY, Issue 3 2007
M. A. Whitelaw-Weckert
The identity of Colletotrichum acutatum as the causal pathogen of grape ripe-rot, which causes yield loss and a bitter taint that lowers wine quality in Australian subtropical wine-grape regions, was confirmed using species-specific primers. Cultural, morphological and molecular methods (RAPD-PCR and sequencing of parts of the 5·8S-ITS regions and the ,-tubulin-2 gene) were used to determine the phylogenetic relationships of Australian C. acutatum isolates from wine grapes and other horticultural crops. A combination of RAPD-PCR and ,-tubulin-2 gene data showed that all wine-grape ripe-rot isolates from northern regions of New South Wales (NSW) and Queensland belong to a proposed new C. acutatum group (A9), together with isolates from Australian strawberry, mango, blueberry and olive. The 5·8S-ITS sequences for these grape pathogens were identical to published sequences for an isolate from Cyclamen (the Netherlands) and differed by 1 bp from isolates from Capsicum (Taiwan) and orange (Costa Rica). The grape ripe-rot isolates from the Shoalhaven Valley (southern NSW) were clustered within two other C. acutatum groups: A2 and A5. In vitro infection studies showed that Australian C. acutatum isolates from almond, blueberry, chilli, grape, mango, olive, strawberry and tomato were able to infect grape and could also infect blueberry and strawberry, indicating a lack of host specificity. This lack of host specificity, the genetic similarity with non-grape isolates, and the fact that many of the non-grape hosts were isolated from wine-growing regions, suggest the potential for cross-infection between grape and other horticultural crops. [source]


Preparation of antimicrobial sutures by preirradiation grafting onto polypropylene monofilament

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 12 2008
Bhuvanesh Gupta
Abstract Antimicrobial sutures were prepared by the radiation grafting of acrylonitrile monomer onto polypropylene (PP) monofilament. The grafted sutures were subsequently hydrolyzed to transform nitrile groups into carboxylic groups for the immobilization of antimicrobial drug, tetracycline hydrochloride (TC). The modified sutures show continuous release of drug for a period of 4,5 days. The antimicrobial activity of the sutures was determined against both Gram positive and Gram negative bacteria by the zone of inhibition technique. Zone of inhibition was observed around the drug-containing sutures in the plate inoculated with Escherichia coli (E. coli), Klebsiella pneumonea (K. pneumonea), and Staphylococcus aureus (S. aureus). The results of infection studies in albino rats against S. aureus showed no infection even after fourth postoperative day of surgery. This is because of the release of the TC drug at the site of injury, which inhibits the bacterial growth. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Comparison of susceptibility of various fish species to experimental infection with channel catfish virus

AQUACULTURE RESEARCH, Issue 16 2009
Wan-An Yuan
Abstract Channel catfish virus (CCV) disease is an acute haemorrhagic disease in juvenile channel catfish (Ictalurus punctatus). To date channel catfish is the only species affected by natural outbreaks of the CCV but juvenile large mouth bass (Micropterus salmoides) and silurus (Silurus meriaionalis) have suffered high mortalities in recent years in China. Histopathological phenomenon of sick fish is similar to CCV disease, and the identified virus was CCV. In this report, the pathogenicity of infectious CCV was examined by infection trials on the first known host species, the channel catfish and other teleosts. Our results indicated that there were higher detection rates of CCV from large mouth bass and silurus fish. Channel catfish virus did not induce mortality in other cypriniformes, but histopathological studies revealed that carp might be infected by both bathing and intraperitoneal infection. No deaths, clinical or histopathological signs, were found in the six other species exposed by immersion or injection. Experimental infection studies confirm that CCV infect not only channel catfish but also other species (large mouth bass, silutus and carp). The outbreaks of CCV disease only occurred when the cultured temperature was above 25 °C. [source]


Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model

ARTHRITIS & RHEUMATISM, Issue 2 2010
Philana Ling Lin
Objective An increased risk of tuberculosis has been documented in humans treated with tumor necrosis factor , (TNF,),neutralizing agents. In murine models, impaired signaling by TNF causes exacerbation of both acute and chronic infection associated with aberrant granuloma formation and maintenance. This study was undertaken to investigate immune modulation in the setting of TNF neutralization in primary and latent tuberculosis in a non-human primate model. Methods Cynomolgus macaques 4 years of age or older were infected with Mycobacterium tuberculosis and subjected to clinical, microbiologic, immunologic, and radiographic examinations. Monkeys were classified as having active or latent disease 6,8 months after infection, based on clinical criteria. Monkeys used in acute infection studies were randomized to receive either adalimumab (prior to and during infection) or no treatment. Monkeys with latent infection that were randomized to receive TNF-neutralizing agent were given either an inhibitor of soluble TNF, recombinant methionyl human soluble TNF receptor I (p55-TNFRI), or adalimumab. Control monkeys with latent infection were given no treatment or saline. Data from previously studied monkeys with active or latent disease were also used for comparison. Results Administration of TNF-neutralizing agents prior to M tuberculosis infection resulted in fulminant and disseminated disease by 8 weeks after infection. Neutralization of TNF in latently infected cynomolgus macaques caused reactivation in a majority of animals as determined by gross pathologic examination and bacterial burden. A spectrum of dissemination was noted, including extrapulmonary disease. Surprisingly, monkeys that developed primary and reactivation tuberculosis after TNF neutralization had similar granuloma structure and composition to that of control monkeys with active disease. TNF neutralization was associated with increased levels of interleukin-12, decreased levels of CCL4, increased chemokine receptor expression, and reduced mycobacteria-induced interferon-, production in blood but not in the affected mediastinal lymph nodes. Finally, the first signs of reactivation often occurred in thoracic lymph nodes. Conclusion These findings have important clinical implications for determining the mechanism of TNF neutralization,related tuberculosis. [source]


Plant models for animal pathogenesis

CELLULAR MICROBIOLOGY, Issue 3 2005
B. Prithiviraj
Summary Several bacteria that are pathogenic to animals also infect plants. Mechanistic studies have proven that some human/animal pathogenic bacteria employ a similar subset of virulence determinants to elicit disease in animals, invertebrates and plants. Therefore, the results of plant infection studies are relevant to animal pathogenesis. This discovery has resulted in the development of convenient, cost-effective, and reliable plant infection models to study the molecular basis of infection by animal pathogens. Plant infection models provide a number of advantages in the study of animal pathogenesis. Using a plant model, mutations in animal pathogenic bacteria can easily be screened for putative virulence factors, a process which if done using existing animal infection models would be time-consuming and tedious. High-throughput screening of plants also provides the potential for unravelling the mechanisms by which plants resist animal pathogenic bacteria, and provides a means to discover novel therapeutic agents such as antibiotics and anti-infective compounds. In this review, we describe the developing technique of using plants as a model system to study Pseudomonas aeruginosa, Enterococcus faecalis and Staphylococcus aureus pathogenesis, and discuss ways to use this new technology against disease warfare and other types of bioterrorism. [source]