Infection Structures (infection + structure)

Distribution by Scientific Domains


Selected Abstracts


The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen

ENVIRONMENTAL MICROBIOLOGY, Issue 1 2010
Mohamed El Oirdi
Summary To protect themselves, plants have evolved an armoury of defences in response to pathogens and other stress situations. These include the production of pathogenesis-related (PR) proteins and the accumulation of antimicrobial molecules such as phytoalexins. Here we report that resistance of tobacco to Botrytis cinerea is cultivar specific. Nicotiana tabacum cv. Petit Havana but not N. tabacum cv. Xanthi or cv. samsun is resistant to B. cinerea. This resistance is correlated with the accumulation of the phytoalexin scopoletin and PR proteins. We also show that this resistance depends on the type of B. cinerea stage. Nicotiana tabacum cv. Petit Havana is more resistant to spores than to mycelium of B. cinerea. This reduced resistance of N. tabacum cv. Petit Havana to the mycelium compared with spores is correlated with the suppression of PR proteins accumulation and the capacity of the mycelium, not the spores, to metabolize scopoletin. These data present an important advance in understanding the strategies used by B. cinerea to establish its disease on tobacco plants. [source]


Fungicide activity through activation of a fungal signalling pathway

MOLECULAR MICROBIOLOGY, Issue 6 2004
Kaihei Kojima
Summary Fungicides generally inhibit enzymatic reactions involved in fungal cellular biosynthesis. Here we report, for the first time, an example of fungicidal effects through hyperactivation of a fungal signal transduction pathway. The OSC1 gene, encoding a MAP kinase (MAPK) related to yeast Hog1, was isolated from the fungal pathogen Colletotrichum lagenarium that causes cucumber anthracnose. The osc1 knockout mutants were sensitive to high osmotic stress and showed increased resistance to the fungicide fludioxonil, indicating that Osc1 is involved in responses to hyperosmotic stress and sensitivity to fludioxonil. The Osc1 MAPK is phosphorylated under high osmotic conditions, indicating activation of Osc1 by high osmotic stress. Importantly, fludioxonil treatment also activates phosphorylation of Osc1, suggesting that improper activation of Osc1 by fludioxonil has negative effects on fungal growth. In the presence of fludioxonil, the wild-type fungus was not able to infect the host plant because of a failure of appressorium-mediated penetration, whereas osc1 mutants successfully infected plants. Analysis using a OSC1- GFP fusion gene indicated that Osc1 is rapidly translocated to the nucleus in appressorial cells after the addition of fludioxonil, suggesting that fludioxonil impairs the function of infection structures by activation of Osc1. Furthermore, fludioxonil activates Hog1-type MAPKs in the plant pathogenic fungi Cochliobolus heterostrophus and Botrytis cinerea. These results strongly suggest that fludioxonil acts as a fungicide, in part, through activation of the MAPK cascade in fungal pathogens. [source]


Leaf, floret and seed infection of wheat by Pyrenophora semeniperda

PLANT PATHOLOGY, Issue 4 2003
M. A. Campbell
Infection processes of Pyrenophora semeniperda on seedling and adult wheat leaves and wheat ears were investigated. Almost 100% germination of conidia occurred on seedling leaves, compared with 20,30% on adult leaves. Appressoria formed over the anticlinal epidermal cell walls and haloes always accompanied infection. Sometimes papillae formed within the leaves as a resistance mechanism. Infection hyphae ramified through the intercellular spaces of the mesophyll resulting in cellular disruption. The infection processes on floral tissues were similar to those observed on leaves; however, no infection occurred on anther, stigmatic or stylar tissues. Infection of ovarian tissue occurred both with and without appressoria formation. Hyphae grew mainly in the epidermal layers and appeared unable to breach the integumental layer as no growth was observed in endosperm or embryo tissues. The optimum dew period temperature for conidial germination was 23·6°C, compared with 19·9°C for lesion development, 20·4°C for the production of infection structures on seedling leaves and 23·7°C for floret infection. Leaf disease development occurred in a logistic manner in response to dew period, with maximum infection observed after 21 h compared with > 48 h in seeds. An initial dark phase during the dew period was necessary for infection and temperature after the dew period had an effect, with significantly more numerous and larger lesions being formed at 15°C compared with 30°C. Seedling leaves were found to be more susceptible than older leaves, under both field and controlled environment conditions. Infection of wheat seeds following inoculation of ears, or after harvest burial of inoculated disease-free seeds, was demonstrated. In the latter, 3-week-old seedlings were slightly stunted, whereas older plants were unaffected. The apparent unimportance of this plant pathogen as a cause of leaf disease in relation to its poor adaptation to dew periods and dew period temperature is discussed, along with the importance of its seed borne characteristics. [source]


A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato

CELLULAR MICROBIOLOGY, Issue 11 2008
Anna O. Avrova
Summary Phytophthora infestans causes late-blight, a devastating and re-emerging disease of potato crops. During the early stages of infection, P. infestans differentiates infection-specific structures such as appressoria for host epidermal cell penetration, followed by infection vesicles, and haustoria to establish a biotrophic phase of interaction. Here we report the cloning, from a suppression subtractive hybridization library, of a P. infestans gene called Pihmp1 encoding a putative glycosylated protein with four closely spaced trans -membrane helices. Pihmp1 expression is upregulated in germinating cysts and in germinating cysts with appressoria, and significantly upregulated throughout infection of potato. Transient gene silencing of Pihmp1 led to loss of pathogenicity and indicated involvement of this gene in the penetration and early infection processes of P. infestans. P. infestans transformants expressing a Pihmp1::monomeric red fluorescent protein (mRFP) fusion demonstrated that Pihmp1 was translated in germinating sporangia, germinating cysts and appressoria, accumulated in the appressorium, and was located at the haustorial membrane during infection. Furthermore, we discovered that haustorial structures are formed over a 3 h period, maturing for up to 12 h, and that their formation is initiated only at sites on the surface of intercellular hyphae where Pihmp1::mRFP is localized. We propose that Pihmp1 is an integral membrane protein that provides physical stability to the plasma membrane of P. infestans infection structures. We have provided the first evidence that the surface of oomycete haustoria possess proteins specific to these biotrophic structures, and that formation of biotrophic structures (infection vesicles and haustoria) is essential to successful host colonization by P. infestans. [source]