Home About us Contact | |||
Industrial Areas (industrial + area)
Selected AbstractsHeavy Metal Distribution in Soils near the Almalyk Mining and Smelting Industrial Area, UzbekistanACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2009Obidjon KODIROV Abstract: The present study demonstrates distribution and chemical forms of heavy metals in soils of the Almalyk mining and smelting industrial area along five transects. The study area is located in Almalyk, Uzbekistan, where the intensification of industrial enterprises negatively impacts the environment. The distribution of 17 heavy metals (Cu, Zn, Pb, Sc, V, Cr, Co, Ni, Ga, Rb, Sr, Y, Zr, Nb, Ba, Th, and U) were studied in 21 sampling locations (21×3=63 soil samples) along five radial transects with a total length of 60 km downwind deposition gradient. Soil samples were collected from the upper layer (0,10 cm) at 4,6 km intervals. As a result of X-ray fluorescence spectrometry analyses by using X-ray fluorescence spectroscopy (XRF, Philips Analytical Ink, USA), a significant decrease in heavy metal (Cu, Zn, Pb) deposition was found going from the source in a downwind direction. Soil samples taken from the first location (near the pollution sources) showed higher concentrations of Cu, Zn and Pb, and lower concentrations with increasing distance from the source. Obtained data showed different impact of pollution sources to heavy metal deposition and distribution in soils. The Almalyk mining and smelting complex is the major source of Pb, Zn and Cu enrichment in soils. Distribution of other trace elements does not exceed background content and suggests lithogenic background. This allowed us to divide these elements into two groups: (1) technogenic (Cu, Zn and Pb); and (2) lithogenic (Sc, V, Cr, Co, Ni, Ga, Rb, Sr, Y, Zr, Nb, Ba, Th and U) origins. [source] Cytotoxicity and oxidative stress caused by chemicals adsorbed on particulate matter,ENVIRONMENTAL TOXICOLOGY, Issue 5 2006Andrea Müller Abstract Air particulate matter (PM) and bound chemicals are potential mediators for adverse health effects. The cytotoxicity and changes in energy-providing processes caused by chemical compounds bound to PM of different size fractions were investigated in Tetrahymena pyriformis. The PM samplings were carried out using a high volume cascade impactor (6 size fractions between 10 ,m and less than 0.49 ,m) at three points of La Plata, Argentina: in an industrial area, a traffic-influenced urban area, and a control area. Extracts from respirable particles below 1 ,m initiated the highest cytotoxic effects, demonstrating their higher risk. In contrast, an increase on oxygen consumption was observed especially in tests of extracts from particles less than 1 ,m from urban and industrial areas. The increase on oxygen consumption could be caused by decoupling processes in the respiratory chain. Otherwise the ATP concentration was increased too, even though to a lower extent. The observed imbalance between oxygen consumption and ATP concentration in exposed T. pyriformis cells may be due to oxidative stress, caused by chemical compounds bound to the particles. Owing to the complexity of effects related to PM and their associated chemical compounds, various physiological parameters necessarily need to be investigated to obtain more information about their possible involvement in human relevant pathogenic processes. As shown here, effects on cell proliferation and on energy-providing processes are suitable indicators for the different impact of PM and adsorbed chemicals from various sampling locations. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 457,463, 2006. [source] Magnetic investigation of heavy metals contamination in urban topsoils around the East Lake, Wuhan, ChinaGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2007Tao Yang SUMMARY Magnetic measurements and heavy metal analyses were performed on 133 samples from the urban soils around the East Lake in Wuhan, China. Samples were collected from four areas with different environmental settings: a heavy industrial area well known for thermal power generation and steel works; villages located in the downwind area of the industrial area; a main road with heavy traffic and roads around the East Lake. Results show that concentrations of magnetic particle and heavy metals in urban topsoils are significantly elevated due to the input of coarser-grained magnetite from industrial (e.g. power generation and steel production) and other anthropogenic activities (e.g. vehicle emissions). Concentration-related magnetic parameters, for example, magnetic susceptibility, saturation isothermal remanent magnetization and anhysteretic remanent magnetization, significantly correlate with the concentration of heavy metals. Moreover, in terms of grain sizes, the magnetic particles of different origins can be efficiently discriminated at the studied region. Therefore, magnetic measurements provide a basis for discrimination and identification of different contamination sources, and can be used as an economic alternative to chemical analysis when mapping heavy metal contamination in urban soil around the East Lake region, Wuhan, China. [source] Ecophysiological Response of Plants to Combined Pollution from Heavy-duty Vehicles and Industrial Emissions in Higher HumidityJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 12 2006Hong-Xia Cui Abstract Pollution can be aggravated in industrial areas if traffic exhausts are mixed with industrial emissions under high humidity conditions. Plants growing in such environments may suffer from severe stress. The impact of vehicle emissions on urban vegetation in an industrial area in Qingdao, China, was investigated by studying seven plant species at visible, physiological and chemical levels. The traits of plant species in certain environmental conditions were compared between a clear area, Badaguan (BDG), and polluted area, Roadside (RS). We found that foliar sulfur uptake for all species was not significantly high at RS compared with BDG, although the sulfur content of atmosphere and surface soils at RS were much higher than those at BDG. For Ailanthus altissima Swingle, the content of foliar pigment and net photosynthesis rate (PN) decreased by 20%. Meanwhile, leaves became incrassate and no visible leaf damage was noted, suggesting this species could adapt well to pollution. A 50% decrease in PN occurred in Hibiscus syriacus L., but there was no statistical change in content of chlorophyll a and b and water uptake. Also, thickened leaves may prevent the pollutant from permeation. Foliar water content was still at a low level, although a water compensation mechanism was established for Fraxinus chinensis Rosb. reflected by low water potential and high water use efficiency. More adversely, a 65% decrease in PN happened inevitably with the significant decomposition of photosynthetic pigments, which exhibited visible damage. We also noted in one evergreen species (Magnolia grandiflora L.) that water absorption driven by low water potential should be helpful to supply water loss induced by strong stomatal transpiration and maintain normal growth. Furthermore, photosynthetic pigment content did not decline statistically, but supported a stable net assimilation. Two herbaceous species, Poa annua L. and Ophiopogon japonicus Ker-Gawl., were very tolerant to adverse stress compared to other woody species, especially in assimilation through a compensatory increase in leaf area. A more remarkable decline in PN (decrease 80%) was noted in the exotic but widespread species, Platanus orientalis L., with serious etiolation and withering being exhibited on the whole canopy. Our results suggested, special for woody species, that most native species are more tolerant to pollution and therefore should to be broadly used in a humid urban industrial environment with heavy-duty vehicle emissions. (Managing editor: Ya-Qin Han) [source] Size distribution approaches for monitoring and conservation of coastal Cymodocea habitatsAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2010S. Orfanidis Abstract 1.Cymodocea nodosa's leaf length distribution was studied as an easily measurable indicator to monitor and conserve Macedonian, North Aegean, Greek coastal habitats. 2.Three Cymodocea meadows off the eastern Kavala Gulf coast (Nea Karvali, Erateino, Agiasma), with that of Nea Karvali close to an industrial area being the most degraded, were sampled during the seagrass main growing season in July 2004. Two further meadows, one pristine to less degraded (Brasidas, Gulf of Kavala) and one degraded (Biamyl, Inner Thessaloniki Gulf), were sampled as benchmarks in July 2005. The results were evaluated using Gaussian fit curves, and non-parametric and nested parametric ANOVA on a hierarchy of spatial scales: area (tens of metres), site (hundreds of metres) and meadow (kilometres). 3.Frequency (%) distribution of leaf length values and CymoSkew index variation were best associated with anthropogenic stress. Frequency (%) distribution of adult and intermediate photosynthetic leaf length values revealed a unimodal distribution possible to be fitted, at least at pristine to less degraded meadows, by normal distribution (R2>0.5). 4.Statistically significant variation was estimated for CymoSkew index, a quantitative expression of leaf length asymmetry, on the meadow scale (P<0.001). Biamyl (3.82) and Nea Karvali (3.64) were indicated as heavily degraded meadows, Erateino (2.93) as a degraded meadow, Agiasma (2.18) as a meadow with the first signs of degradation, and Brasidas (1.68) as a pristine to less degraded meadow. These results in combination with other meadow specific biotic parameters were used to suggest a preliminary angiosperm ,Ecological Status Classes' classification scheme useful for the implementation of WFD in the north Aegean Sea. 5.The CymoSkew index seems to respond to lower levels of stress than is needed for other more conservative plant modules and therefore, could be regarded as an early warning indicator of Cymodocea habitat degradation. Copyright © 2009 John Wiley & Sons, Ltd. [source] Heavy Metal Distribution in Soils near the Almalyk Mining and Smelting Industrial Area, UzbekistanACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2009Obidjon KODIROV Abstract: The present study demonstrates distribution and chemical forms of heavy metals in soils of the Almalyk mining and smelting industrial area along five transects. The study area is located in Almalyk, Uzbekistan, where the intensification of industrial enterprises negatively impacts the environment. The distribution of 17 heavy metals (Cu, Zn, Pb, Sc, V, Cr, Co, Ni, Ga, Rb, Sr, Y, Zr, Nb, Ba, Th, and U) were studied in 21 sampling locations (21×3=63 soil samples) along five radial transects with a total length of 60 km downwind deposition gradient. Soil samples were collected from the upper layer (0,10 cm) at 4,6 km intervals. As a result of X-ray fluorescence spectrometry analyses by using X-ray fluorescence spectroscopy (XRF, Philips Analytical Ink, USA), a significant decrease in heavy metal (Cu, Zn, Pb) deposition was found going from the source in a downwind direction. Soil samples taken from the first location (near the pollution sources) showed higher concentrations of Cu, Zn and Pb, and lower concentrations with increasing distance from the source. Obtained data showed different impact of pollution sources to heavy metal deposition and distribution in soils. The Almalyk mining and smelting complex is the major source of Pb, Zn and Cu enrichment in soils. Distribution of other trace elements does not exceed background content and suggests lithogenic background. This allowed us to divide these elements into two groups: (1) technogenic (Cu, Zn and Pb); and (2) lithogenic (Sc, V, Cr, Co, Ni, Ga, Rb, Sr, Y, Zr, Nb, Ba, Th and U) origins. [source] Cytotoxicity and oxidative stress caused by chemicals adsorbed on particulate matter,ENVIRONMENTAL TOXICOLOGY, Issue 5 2006Andrea Müller Abstract Air particulate matter (PM) and bound chemicals are potential mediators for adverse health effects. The cytotoxicity and changes in energy-providing processes caused by chemical compounds bound to PM of different size fractions were investigated in Tetrahymena pyriformis. The PM samplings were carried out using a high volume cascade impactor (6 size fractions between 10 ,m and less than 0.49 ,m) at three points of La Plata, Argentina: in an industrial area, a traffic-influenced urban area, and a control area. Extracts from respirable particles below 1 ,m initiated the highest cytotoxic effects, demonstrating their higher risk. In contrast, an increase on oxygen consumption was observed especially in tests of extracts from particles less than 1 ,m from urban and industrial areas. The increase on oxygen consumption could be caused by decoupling processes in the respiratory chain. Otherwise the ATP concentration was increased too, even though to a lower extent. The observed imbalance between oxygen consumption and ATP concentration in exposed T. pyriformis cells may be due to oxidative stress, caused by chemical compounds bound to the particles. Owing to the complexity of effects related to PM and their associated chemical compounds, various physiological parameters necessarily need to be investigated to obtain more information about their possible involvement in human relevant pathogenic processes. As shown here, effects on cell proliferation and on energy-providing processes are suitable indicators for the different impact of PM and adsorbed chemicals from various sampling locations. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 457,463, 2006. [source] Speciation of heavy metals in recent sediments of three coastal ecosystems in the Gulf of Cadiz, Southwest Iberian PeninsulaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2003Veronica Sáenz Abstract A five-step sequential extraction technique was used to determine the partitioning of Cr, Mn, Fe, Cu, Zn, Cd, and Pb among the operative sedimentary phases (exchangeable ions, carbonates, manganese and iron oxides, sulfides and organic matter, and residual minerals) in coastal sediment from three locations in the southwest Iberian Peninsula. Two sites are located close to industrial areas, the salt marshes of the Odiel River and Bay of Cádiz, and one in a nonindustrial area, the Barbate River salt marshes. The Odiel River salt marshes also receive the drainage from mining activities in the Huelva region. In the sediments from the Bay of Cádiz and Barbate River salt marshes, Cr, Cu, Fe, and Zn were extracted from the residual fraction at percentages higher than 60%. In the sediments from the Odiel River salt marshes, concentrations of all the metals, except Cu, zn, and cd, exceeded 60% in the residual fraction as well. In the sediments from the Bay of Cádiz and Barbate River salt marshes, the main bioavailable metals were Mn and Cd; in those from the Odiel River salt marshes, the main bioavailable metals were Zn and Cd, respectively. The environmental risk was determined by employing the environmental risk factor (ERF), defined as ERF = (CSQV , Ci/CSQV), where Ci is the heavy metal concentration in the first four fractions and CSQV is concentration sediment quality value (the highest concentration with no associated biological effect). Our results showed that the sediments from the Cádiz Bay and Barbate River salt marshes do not constitute any environmental risk under the current natural conditions. In contrast, in the Odiel River salt marshes, Cu, Zn, and Pb yielded ERFs of less than zero at several sampling stations and, consequently, pose a potential threat for the organisms in the area. This is a consequence of the high levels of metals in the area derived from the mining activity (pyrite) and industrial activities and the association of these heavy metals with more labile fractions of the sediments. [source] Spatial distribution of polychlorinated naphthalenes in air over the Great Lakes and air-water gas exchange in Lake OntarioENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2003Paul A. Helm Abstract High-volume air sample were collected during research cruises of Lake Superior in August 1996 and May 1977 and of Lake Ontario (North America) in July and September 1998 and June 2000 and analyzed for polychlorinated naphthalenes (PCNs). Levels of tetra- to octachloronaphthalene (,PCN) varied spatially, with mean values (±SD) of 1.78 ± 0.74 and 1.46 ± 1.07 pg m,3 for Lake Superior in 1996 and 1997, respectively, and of 5.53 ± 2.19 and 5.60 ± 2.24 pg m,3 for Lake Ontario in 1998 and 2000, respectively. Evaporative sources were predominant, although combustion marker congeners such as tetrachloronaphthalenes 44 and 29 and pentachloronaphthalene 54 were present in most samples and were enhanced relative to technical PCN mixtures. The ,PCN concentrations were higher in Lake Ontario samples collected in the western half of the lake and when winds were from the west. Greater proportions of the population and industrial areas are located around the western part of Lake Ontario. Water-air fugacity ratios, calculated from air and water samples collected in June 2000, indicate that the trichloronaphthalenes are volatilizing from Lake Ontario, whereas the tetrachloronaphthalenes are close to equilibrium and the net deposition of tetrachloronaphthalenes can occur when the urban air plume influences levels over the lake. [source] Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, TurkeyINDOOR AIR, Issue 2 2010B. Pekey Abstract, This study presents indoor/outdoor PM2.5 and PM10 concentrations measured during winter and summer in 15 homes in Kocaeli, which is one of the most industrialized areas in Turkey. Indoor and outdoor PM2.5 and PM10 mass concentrations and elemental composition were determined using an X-ray fluorescence spectrometer. Quantitative information was obtained on mass concentrations and other characteristics such as seasonal variation, indoor/outdoor (I/O) ratio, PM2.5/PM10 ratio, correlations and sources. Average indoor and outdoor PM2.5 concentrations were 29.8 and 23.5 ,g/m3 for the summer period, and 24.4 and 21.8 ,g/m3 for the winter period, respectively. Average indoor and outdoor PM10 concentrations were 45.5 and 59.9 ,g/m3 for the summer period, and 56.9 and 102.3 ,g/m3 for the winter period, respectively. A varimax rotated factor analysis (FA) was performed separately on indoor and outdoor datasets in an effort to identify possible heavy metal sources of PM2.5 and PM10 particle fractions. FA of outdoor data produced source categories comprising polluted soil, industry, motor vehicles, and fossil fuel combustion for both PM fractions, while source categories determined for indoor data for both PM2.5 and PM10 comprised industry, polluted soil, motor vehicles, and smoking, with an additional source category of cooking activities detected for the PM2.5 fraction. Practical Implications In buildings close to industrial areas or traffic arteries, outdoor sources may have an important effect on indoor air pollution. Therefore, indoor and outdoor investigations should be conducted simultaneously to assess the relationship between indoor and outdoor pollution. This study presents the simultaneous measurement of PM fractions (PM2.5 and PM10) and their elemental compositions to determine the sources of respirable PM and the heavy metals bound to these particles in indoor air. Factor analysis of indoor data indicated that the contribution of outdoor pollutant sources to indoor pollution was about 70%, making these sources the most significant for indoor heavy metal pollution, wheras other sources of indoor pollution included smoking and cooking activities. [source] Synoptic climatological influences on the spatial and temporal variability of aerosols over North AmericaINTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 6 2006Helen C. Power Abstract The spatial and temporal variability of atmospheric aerosols is not well understood, as most studies have been constrained to data sets that include few stations and are of short duration. Furthermore, all methods for quantifying atmospheric turbidity suffer from a major constraint in that they require cloudless sky conditions. This restriction produces gaps in the turbidity record and sampling bias, which has led to questionable inferences about the variability of aerosols. In this research, we address these concerns via analyses at scales broader than all previous studies. We analyzed the spectral aerosol optical depth at 500 nm (,a5) and Ångström's wavelength exponent (,), which represents the relative size distribution of aerosols. A total of 27 sites, with a mean period of record of 7.3 years, are included. Beyond seasonal and spatial summaries of aerosol variability, we have divided observations by synoptic condition, utilizing the Spatial Synoptic Classification (SSC). Our results show that atmospheric turbidity across North America is greatest over the east. Seasonality of both parameters was shown, most notably a greater ,a5 during summertime. Utilizing the SSC, we have uncovered significant differences across weather types. Moist weather types, especially moist tropical, display considerably higher turbidity, while the colder, drier dry polar weather type is associated with low aerosol optical depth. Certain weather types show considerable seasonal variability; the dry tropical weather type is associated with relatively low values in winter, but high values in summer, when convection is significant. Cluster analyses of stations yielded three general regions, each with similar synoptic variability: a western cluster with low aerosol optical depth and minimal synoptic variability, an eastern cluster with higher turbidity and variability, and a cluster located on the periphery of the eastern cluster, associated with moderate levels of turbidity but very high variability, suggesting a varied influence of nearby industrial areas. Copyright © 2006 Royal Meteorological Society. [source] A bird's eye view of the peppered mothJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2000Majerus Industrial melanism in Biston betularia is one of the best known examples of the role of natural selection in evolution and has received considerable scrutiny for many years. The rise in frequency of the dark form of the moth (carbonaria) and a decrease in the pale form (typica) was the result of differential predation by birds, the melanic form being more cyptic than typica in industrial areas where the tree bark was darkened by air pollution. One important aspect of early work evaluating the relative crypsis of the forms of B. betularia on tree trunks with different lichen flora was the reliance on human observers. Humans, however, do not have the same visual capabilities as birds. Birds have well-developed ultraviolet (UV) vision, an important component of their colour processing system that affects many aspects of behaviour, including prey detection. We examined the UV characteristics of the two forms of B. betularia and a number of foliose and crustose lichens. In human visible light the speckled form typica appeared cyptic when seen against a background of foliose lichen, whereas the dark form carbonaria was conspicuous. Under UV light the situation was reversed. The foliose lichens absorbed UV and appeared dark as did carbonaria. Typica, however, reflected UV and was conspicuous. Against crustose lichens, typica was less visible than carbonaria in both visible and UV light. These findings are considered in relation to the distribution and recolonization of trees by lichens and the resting behaviour of B. betularia. [source] Ecophysiological Response of Plants to Combined Pollution from Heavy-duty Vehicles and Industrial Emissions in Higher HumidityJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 12 2006Hong-Xia Cui Abstract Pollution can be aggravated in industrial areas if traffic exhausts are mixed with industrial emissions under high humidity conditions. Plants growing in such environments may suffer from severe stress. The impact of vehicle emissions on urban vegetation in an industrial area in Qingdao, China, was investigated by studying seven plant species at visible, physiological and chemical levels. The traits of plant species in certain environmental conditions were compared between a clear area, Badaguan (BDG), and polluted area, Roadside (RS). We found that foliar sulfur uptake for all species was not significantly high at RS compared with BDG, although the sulfur content of atmosphere and surface soils at RS were much higher than those at BDG. For Ailanthus altissima Swingle, the content of foliar pigment and net photosynthesis rate (PN) decreased by 20%. Meanwhile, leaves became incrassate and no visible leaf damage was noted, suggesting this species could adapt well to pollution. A 50% decrease in PN occurred in Hibiscus syriacus L., but there was no statistical change in content of chlorophyll a and b and water uptake. Also, thickened leaves may prevent the pollutant from permeation. Foliar water content was still at a low level, although a water compensation mechanism was established for Fraxinus chinensis Rosb. reflected by low water potential and high water use efficiency. More adversely, a 65% decrease in PN happened inevitably with the significant decomposition of photosynthetic pigments, which exhibited visible damage. We also noted in one evergreen species (Magnolia grandiflora L.) that water absorption driven by low water potential should be helpful to supply water loss induced by strong stomatal transpiration and maintain normal growth. Furthermore, photosynthetic pigment content did not decline statistically, but supported a stable net assimilation. Two herbaceous species, Poa annua L. and Ophiopogon japonicus Ker-Gawl., were very tolerant to adverse stress compared to other woody species, especially in assimilation through a compensatory increase in leaf area. A more remarkable decline in PN (decrease 80%) was noted in the exotic but widespread species, Platanus orientalis L., with serious etiolation and withering being exhibited on the whole canopy. Our results suggested, special for woody species, that most native species are more tolerant to pollution and therefore should to be broadly used in a humid urban industrial environment with heavy-duty vehicle emissions. (Managing editor: Ya-Qin Han) [source] Low-level lead exposure and childrenJOURNAL OF PAEDIATRICS AND CHILD HEALTH, Issue 5 2001NR Wigg Abstract: The adverse effects of environmental lead exposure on the mental development of young children are well established. There is no safe level of blood lead below which children are not affected. Recent research expands our understanding of the impact of lead exposure continuing into later childhood, as well as its effects on children's behaviour. However, social and other environmental factors also contribute to variance in measures of developmental and behavioural outcomes. Lead is associated with only modest effects on children's development, but is a potentially modifiable risk factor. As environmental exposure to lead declines for the whole population, continued specific attention is needed for children living in industrial areas. [source] Changing the economic landscape: The phenomenon of regional inversion in the US manufacturing sector,PAPERS IN REGIONAL SCIENCE, Issue 4 2002Luis Fernando Lanaspa-Santolaria Regional Inversion; US manufacturing sector; unit root tests; structural breaks Abstract Regional inversion is the name given to the phenomenon whereby the traditional industrial areas of certain countries lose their weight in favor of what were formerly peripheral zones. Against this background our first objective is to offer a formal and rigorous definition of the concept of regional inversion from an econometric standpoint. To that end we relate such a process with the long-run concepts of convergence and catching-up. Secondly, we test this definition through the use of unit root statistics and apply these to demonstrate the presence of this phenomenon in some of the US two-digit SIC industries. [source] Contribution of non-agricultural pesticides to pesticide load in surface water,PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 6 2004Christian Skark Abstract Two small creeks, tributaries of the River Ruhr near Schwerte, Federal Republic of Germany, were investigated to reveal the regional agricultural and non-agricultural sources of pesticide inputs and the main pathways to surface water. In addition, the receiving water was monitored for pesticides. The watersheds are situated at the northern margin of the Rhenian Schiefergebirge, a highland landscape in North-Rhine,Westphalia. Solid carboniferous shale is covered by a shallow layer of quaternary unconsolidated rock (porous aquifer thickness <5 m). Occurrence of herbicides such as chlortoluron, isoproturon and terbuthylazine in surface water could be due to their broad agricultural application in regional dominant crops, such as barley, wheat and maize. Occurrence of diuron and glyphosate results from their use in residential settlements and industrial areas as well as from weed control on railway tracks. Atrazine concentrations up to 0.8 µg litre,1 indicated recent use of this herbicide, which has been banned since 1991, and was also the result of non-agricultural applications. Pathways for pesticide input to the receiving waters were related to both surface run-off and underground passage. Two-thirds of the observed diuron load in the surface water resulted from an input by run-off. This was expected as a result of total herbicide application targets to sealed surfaces infringing current regulations and recommendations. Diuron load varied between 0.6 and 1.2% of the estimated amount applied annually in the investigated catchments. Non-agricultural pesticide use contributed more than two-thirds of the whole observed pesticide load in the tributaries and at least one-third in the River Ruhr. Copyright © 2004 Society of Chemical Industry [source] Potential for octylphenol to biodegrade in some english riversENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2000Andrew C. Johnson Abstract To study octylphenol biodegradation, samples of river water and sediments were taken from the Aire and Calderr vers in the United Kingdom, running through urban/industrial areas, as well as the Thames River running through a more rural area. Using laboratory microcosms, half-lives of 7 to 50 d were obtained for the water samples, with most curves fitting a zero-order reaction. The Calder River was sampled at four separate points along a 45-km length, encompassing rural to increasingly urban/industrial reaches. Little degradation was observed in the sample from the upland/rural reach, while half-lives of 8 to 13 d were seen in the more urban/industrial reaches. Mineralization of the phenyl ring, detected by evolution of 14CO2 from ring-labeled octylphenol, was only observed in water from the Calder River sample. Degradation rate was similar for a range of concentrations from 0.3 to 100 ,,g/L when tested with river water from the Thames River. No degradation was observed over 83 d when bed sediments were spiked with octylphenol and incubated under anaerobic conditions. [source] Indoor/outdoor concentrations and elemental composition of PM10/PM2.5 in urban/industrial areas of Kocaeli City, TurkeyINDOOR AIR, Issue 2 2010B. Pekey Abstract, This study presents indoor/outdoor PM2.5 and PM10 concentrations measured during winter and summer in 15 homes in Kocaeli, which is one of the most industrialized areas in Turkey. Indoor and outdoor PM2.5 and PM10 mass concentrations and elemental composition were determined using an X-ray fluorescence spectrometer. Quantitative information was obtained on mass concentrations and other characteristics such as seasonal variation, indoor/outdoor (I/O) ratio, PM2.5/PM10 ratio, correlations and sources. Average indoor and outdoor PM2.5 concentrations were 29.8 and 23.5 ,g/m3 for the summer period, and 24.4 and 21.8 ,g/m3 for the winter period, respectively. Average indoor and outdoor PM10 concentrations were 45.5 and 59.9 ,g/m3 for the summer period, and 56.9 and 102.3 ,g/m3 for the winter period, respectively. A varimax rotated factor analysis (FA) was performed separately on indoor and outdoor datasets in an effort to identify possible heavy metal sources of PM2.5 and PM10 particle fractions. FA of outdoor data produced source categories comprising polluted soil, industry, motor vehicles, and fossil fuel combustion for both PM fractions, while source categories determined for indoor data for both PM2.5 and PM10 comprised industry, polluted soil, motor vehicles, and smoking, with an additional source category of cooking activities detected for the PM2.5 fraction. Practical Implications In buildings close to industrial areas or traffic arteries, outdoor sources may have an important effect on indoor air pollution. Therefore, indoor and outdoor investigations should be conducted simultaneously to assess the relationship between indoor and outdoor pollution. This study presents the simultaneous measurement of PM fractions (PM2.5 and PM10) and their elemental compositions to determine the sources of respirable PM and the heavy metals bound to these particles in indoor air. Factor analysis of indoor data indicated that the contribution of outdoor pollutant sources to indoor pollution was about 70%, making these sources the most significant for indoor heavy metal pollution, wheras other sources of indoor pollution included smoking and cooking activities. [source] |