Induced Pathogenesis (induced + pathogenesis)

Distribution by Scientific Domains

Selected Abstracts

Helicobacter pylori activates protein kinase C delta to control Raf in MAP kinase signalling: Role in AGS epithelial cell scattering and elongation

CYTOSKELETON, Issue 10 2009
Sabine Brandt
Abstract Helicobacter pylori is a major etiological agent in the development of chronic gastritis, duodenal ulcer and gastric carcinoma in humans. Virulent H. pylori strains harbor a type IV secretion system (T4SS) encoded by the cag pathogenicity island. This T4SS injects the CagA protein into gastric epithelial cells leading to actin-cytoskeletal rearrangements followed by cell elongation and scattering. Here we report that PMA (4,-phorbol-12-myristate-13-acetate), a well-known cell-permeable activator of protein kinase C (PKC), induces a remarkably similar cellular phenotype as compared to infection with H. pylori. PKCs comprise a large family of serine/threonine kinases which are important for multiple physiological processes of host cells. We therefore investigated the role of individual PKC members and the signalling pathways involved in phenotypical outcome. Using isoform-specific silencing RNAs and pharmacological inhibitors we found that two isoforms, PKC-, and PKC-,, were essential for both PMA- and H. pylori -induced elongation phenotype. Furthermore, we provide evidence that PKC-, activity is profoundly stimulated during the course of infection using activation-specific antibodies against PKC phosphorylated at threonine residue 505 or serine residue 660. Infection with H. pylori wild-type and mutants showed that at least two bacterial factors activate PKC-, in a time-dependent manner, one of which is CagA. Immunofluorescence microscopy studies further demonstrated that phosphorylated PKC-, is accumulated and recruited to dynamic actin-structures at the cell membrane. Finally, we show that PKC-, specifically targets Raf kinase to stimulate the Erk1/2 kinase pathway, which is also crucial for phenotypical outcome. Thus, PKC-, is another important mediator of H. pylori -induced pathogenesis. Cell Motil. Cytoskeleton 2009. 2009 Wiley-Liss, Inc. [source]

Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection,

HEPATOLOGY, Issue 1 2010
Nabora Soledad Reyes de Mochel
Oxidative stress has been identified as a key mechanism of hepatitis C virus (HCV),induced pathogenesis. Studies have suggested that HCV increases the generation of hydroxyl radical and peroxynitrite close to the cell nucleus, inflicting DNA damage, but the source of reactive oxygen species (ROS) remains incompletely characterized. We hypothesized that HCV increases the generation of superoxide and hydrogen peroxide close to the hepatocyte nucleus and that this source of ROS is reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase 4 (Nox4). Huh7 human hepatoma cells and telomerase-reconstituted primary human hepatocytes, transfected or infected with virus-producing HCV strains of genotypes 2a and 1b, were examined for messenger RNA (mRNA), protein, and subcellular localization of Nox proteins along with the human liver. We found that genotype 2a HCV induced persistent elevations of Nox1 and Nox4 mRNA and proteins in Huh7 cells. HCV genotype 1b likewise elevated the levels of Nox1 and Nox4 in telomerase-reconstituted primary human hepatocytes. Furthermore, Nox1 and Nox4 proteins were increased in HCV-infected human liver versus uninfected liver samples. Unlike Nox1, Nox4 was prominent in the nuclear compartment of these cells as well as the human liver, particularly in the presence of HCV. HCV-induced ROS and nuclear nitrotyrosine could be decreased with small interfering RNAs to Nox1 and Nox4. Finally, HCV increased the level of transforming growth factor beta 1 (TGF,1). TGF,1 could elevate Nox4 expression in the presence of infectious HCV, and HCV increased Nox4 at least in part through TGF,1. Conclusion: HCV induced a persistent elevation of Nox1 and Nox4 and increased nuclear localization of Nox4 in hepatocytes in vitro and in the human liver. Hepatocyte Nox proteins are likely to act as a persistent, endogenous source of ROS during HCV-induced pathogenesis. Hepatology 2010 [source]

Helicobacter pylori and mitogen-activated protein kinases regulate the cell cycle, proliferation and apoptosis in gastric epithelial cells

Song-Ze Ding
Abstract Background and Aims:,Helicobacter pylori infection activates mitogen-activated protein kinases (MAPK) and modulates cell proliferation and apoptosis. However, the relationship between H. pylori infection and MAPK signaling in controlling cell proliferation and apoptosis is not clear, nor has the role of MAPK on the gastric epithelial cell cycle and proliferation been established. Therefore, we investigated the effects of H. pylori infection and MAPK inhibition on these processes. Methods:, Gastric epithelial cell lines (AGS and MKN45) were infected with H. pylori and/or treated with MAPK inhibitors. Cell cycle and apoptosis were measured by flow cytometry. Cell cycle proteins and proliferation were monitored by western blot and cell count, respectively. Results:, Infection with H. pylori resulted in dose-dependent MAPK activation, cell cycle arrest, reduced proliferation and increased apoptosis. The effect of H. pylori and MAPK at various cell cycle checkpoints was noted: MEK1/2 and p38 inhibition increased H. pylori -induced cell cycle G1 arrest, while JNK inhibition reduced G1 arrest. MEK1/2 inhibition increased p21, p27 and cyclin E and JNK inhibition additionally increased cyclin D1 expression. Both inhibitors decreased cell proliferation. All inhibitors enhanced apoptosis after H. pylori infection. We also detected MAPK cross-talk in AGS cells: p38 and JNK inhibitors increased ERK activation. The p38 inhibitor increased JNK and the MEK1/2 inhibitor decreased JNK activation only during H. pylori infection. Conclusions:, These results suggest H. pylori and MAPK differentially regulate the cell cycle, proliferation and apoptosis in gastric epithelial cells. The imbalance between H. pylori infection and MAPK activation likely contributes to the H. pylori -induced pathogenesis. [source]


Li Li
SUMMARY 1Peroxisome proliferator-activated receptor (PPAR)-, agonists have been demonstrated to exert protective effects against homocysteine (Hcy)-induced pathogenesis. However, the effects of PPAR-, agonists on Hcy-induced migration are unknown. In the present study, we examined the effect of pioglitazone on the migration of vascular smooth muscle cells (VSMC) induced by Hcy and the possible mechanism involved. 2Vascular smooth muscle cells were isolated from the thoracic aortas of male Sprague-Dawley rats. The migration of VSMC was examined using a transwell technique. The generation of intracellular reactive oxygen species (ROS) was measured using the ROS-sensitive fluoroprobe 2,,7,-dichlorodihydrofluorescein diacetate. The activity of NAD(P)H oxidase was assessed by lucigenin enhanced chemiluminescence. Activation of p38 mitogen-activated protein kinase (MAPK) was determined by western blotting. 3The results showed that pioglitazone dose-dependently inhibited the migration of VSMC induced by Hcy. This was not reversed by the PPAR-, antagonist GW9662. In addition, pretreatment with the NAD(P)H oxidase inhibitor diphenylene iodonium (DPI), the free radical scavenger N -acetylcysteine and the p38 MAPK inhibitor SB202190 blocked Hcy-induced VSMC migration. Furthermore, we observed that pioglitazone suppressed Hcy-induced intracellular ROS production; similar effects were observed with DPI and NAC. Pioglitazone attenuated Hcy-induced activation of NAD(P)H oxidase. Moreover, pioglitazone blocked Hcy-induced p38 MAPK phosphorylation; similar effects were observed for DPI, NAC and SB202190. 4The data demonstrate that pioglitazone inhibits Hcy-induced VSMC migration that is independent of PPAR-,. Furthermore, part of the biological effect of pioglitazone involves a decrease in the levels of NAD(P)H oxidase derived-ROS and p38 MAPK activation. [source]