Individual Chromosomes (individual + chromosome)

Distribution by Scientific Domains


Selected Abstracts


The WRKY Gene Family in Rice (Oryza sativa)

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 6 2007
Christian A. Ross
Abstract WRKY genes encode transcription factors that are involved in the regulation of various biological processes. These zinc-finger proteins, especially those members mediating stress responses, are uniquely expanded in plants. To facilitate the study of the evolutionary history and functions of this supergene family, we performed an exhaustive search for WRKY genes using HMMER and a Hidden Markov Model that was specifically trained for rice. This work resulted in a comprehensive list of WRKY gene models in Oryza sativa L. ssp. indica and L. ssp. japonica. Mapping of these genes to individual chromosomes facilitated elimination of the redundant, leading to the identification of 98 WRKY genes in japonica and 102 in indica rice. These genes were further categorized according to the number and structure of their zinc-finger domains. Based on a phylogenetic tree of the conserved WRKY domains and the graphic display of WRKY loci on corresponding indica and japonica chromosomes, we identified possible WRKY gene duplications within, and losses between the two closely related rice subspecies. Also reviewed are the roles of WRKY genes in disease resistance and responses to salicylic acid and jasmonic acid, seed development and germination mediated by gibberellins, other developmental processes including senescence, and responses to abiotic stresses and abscisic acid in rice and other plants. The signaling pathways mediating WRKY gene expression are also discussed. [source]


Asymmetric division of spindle microtubules and microfilaments during bovine meiosis from metaphase I to metaphase III

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2005
Guang-Peng Li
Abstract The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies. Mol. Reprod. Dev. 71: 220,226, 2005. © 2005 Wiley-Liss, Inc. [source]


Plant survival after freezing in wheat ,Cappelle Desprez' (,Bezostaya 1') intervarietal chromosome substitution lines

PLANT BREEDING, Issue 2 2008
G. Ganeva
Abstract The effect of individual chromosomes of the wheat variety ,Bezostaya 1' on plant resistance to low temperatures was studied using the available set of intervarietal ,Cappelle Desprez' (,Bezostaya 1') chromosome substitution lines. The number of plants surviving after freezing at ,12, ,15 and ,17°C was determined for both parents and lines in trials in 2004/2005 and 2005/2006. Significant differences between the three temperature treatments and between lines were found, implying that two factors, the level of temperature stress and chromosome substitutions, were influencing plant survival. Improved frost resistance in both trials was associated with genes located on five chromosomes: 5A, 2D, 4A, 5D and 6A. An increase in the plant frost resistance because of the effects of 7A and 1A chromosomes was also observed in the 2005/2006 trial, when the overall autumn and winter (January) temperatures were lower than in 2004/2005. [source]


Bacterial artificial chromosome library for genome-wide analysis of Chinese hamster ovary cells

BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009
Takeshi Omasa
Abstract Chinese hamster ovary (CHO) cell lines are widely used for scientific research and biotechnology. A CHO genomic bacterial artificial chromosome (BAC) library was constructed from a mouse dihydrofolate reductase (DHFR) gene-amplified CHO DR1000L-4N cell line for genome-wide analysis of CHO cell lines. The CHO BAC library consisted of 122,281 clones and was expected to cover the entire CHO genome five times. A CHO chromosomal map was constructed by fluorescence in situ hybridization (FISH) imaging using BAC clones as hybridization probes (BAC-FISH). Thirteen BAC-FISH marker clones were necessary to identify all the 20 individual chromosomes in a DHFR-deficient CHO DG44 cell line because of the aneuploidy of the cell line. To determine the genomic structure of the exogenous Dhfr amplicon, a 165-kb DNA region containing exogenous Dhfr was cloned from the BAC library using high-density replica (HDR) filters and Southern blot analysis. The nucleotide sequence analysis revealed a novel genomic structure in which the vector sequence containing Dhfr was sandwiched by long inverted sequences of the CHO genome. Biotechnol. Bioeng. 2009; 104: 986,994. © 2009 Wiley Periodicals, Inc. [source]