Independent Signalling Pathways (independent + signalling_pathway)

Distribution by Scientific Domains


Selected Abstracts


cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKA-independent manner in Sclerotinia sclerotiorum

MOLECULAR MICROBIOLOGY, Issue 1 2005
Changbin Chen
Summary Sclerotinia sclerotiorum is a filamentous ascomycete phytopathogen able to infect an extremely wide range of cultivated plants. Our previous studies have shown that increases in cAMP levels result in the impairment of the development of the sclerotium, a highly differentiated structure important in the disease cycle of this fungus. cAMP also inhibits the activation of a S. sclerotiorum mitogen-activated protein kinase (MAPK), which we have previously shown to be required for sclerotial maturation; thus cAMP-mediated sclerotial inhibition is modulated through MAPK. However, the mechanism(s) by which cAMP inhibits MAPK remains unclear. Here we demonstrate that a protein kinase A (PKA)-independent signalling pathway probably mediates MAPK inhibition by cAMP. Expression of a dominant negative form of Ras, an upstream activator of the MAPK pathway, also inhibited sclerotial development and MAPK activation, suggesting that a conserved Ras/MAPK pathway is required for sclerotial development. Evidence from bacterial toxins that specifically inhibit the activity of small GTPases, suggested that Rap-1 or Ras is involved in cAMP action. The Rap-1 inhibitor, GGTI-298, restored MAPK activation in the presence of cAMP, further suggesting that Rap-1 is responsible for cAMP-dependent MAPK inhibition. Importantly, inhibition of Rap-1 is able to restore sclerotial development blocked by cAMP. Our results suggest a novel mechanism involving the requirement of Ras/MAPK pathway for sclerotial development that is negatively regulated by a PKA-independent cAMP signalling pathway. Cross-talk between these two pathways is mediated by Rap-1. [source]


Early signalling events in the Avr9/Cf-9-dependent plant defence response

MOLECULAR PLANT PATHOLOGY, Issue 1 2000
Tina Romeis
Resistance of tomato to the leaf mould fungus Cladosporium fulvum is controlled by the interaction between a plant-encoded resistance gene (Cf-9) and pathogen-encoded avirulence (Avr9) gene. Our objective is to understand the underlying molecular mechanisms that transmit the Cf-9/Avr9-dependent pathogen perception event and activate the plant defence response. Our approach toward the understanding of Cf -function is based on the analysis of early Cf-9/Avr9-mediated responses and signalling events. Because Cf-9 transgenically expressed in tobacco retains its specificity and activity to the Avr9 elicitor, signalling experiments were conducted in the heterologous system using these transgenic lines or derived Cf9 tobacco cell cultures. Among the earliest responses to the Avr9/Cf-9 elicitation event were rapid changes in ion-fluxes, the synthesis of active oxygen species (AOS), probably catalysed by a plant NADPH-oxidase, and the transient activation of two MAP kinases. These kinases were identified as WIPK (wounding-induced protein kinase) and SIPK (salicylic-acid induced kinase) from tobacco. Studies with pharmacological inhibitors suggested that the MAP kinases are located in an independent signalling pathway from the Avr9/Cf-9-dependent synthesis of AOS. SIPK and WIPK were involved in pathogen-related elicitation processes as well as in abiotic stress responses. This indicates that the plant defence is triggered via a signalling network that shares components with pathways originating from abiotic environmental stress stimuli. [source]


Three independent signalling pathways repress motility in Pseudomonas fluorescens F113

MICROBIAL BIOTECHNOLOGY, Issue 4 2009
Ana Navazo
Summary Motility is one of the most important traits for rhizosphere colonization by pseudomonads. Despite this importance, motility is severely repressed in the rhizosphere-colonizing strain Pseudomonas fluorescens F113. This bacterium is unable to swarm under laboratory conditions and produce relatively small swimming haloes. However, phenotypic variants with the ability to swarm and producing swimming haloes up to 300% larger than the wild-type strain, arise during rhizosphere colonization. These variants harbour mutations in the genes encoding the GacA/GacS two-component system and in other genes. In order to identify genes and pathways implicated in motility repression, we have used generalized mutagenesis with transposons. Analysis of the mutants has shown that besides the Gac system, the Wsp system and the sadB gene, which have been previously implicated in cyclic di-GMP turnover, are implicated in motility repression: mutants in the gacS, sadB or wspR genes can swarm and produce swimming haloes larger than the wild-type strain. Epistasis analysis has shown that the pathways defined by each of these genes are independent, because double and triple mutants show an additive phenotype. Furthermore, GacS, SadB and WspR act at different levels. Expression of the fleQ gene, encoding the master regulator of flagella synthesis is higher in the gacS - and sadB - backgrounds than in the wild-type strain and this differential expression is reflected by a higher secretion of the flagellin protein FliC. Conversely, no differences in fleQ expression or FliC secretion were observed between the wild-type strain and the wspR - mutant. [source]


Does NGF binding to p75 and trkA receptors activate independent signalling pathways to sensitize nociceptors?

THE JOURNAL OF PHYSIOLOGY, Issue 2 2002
L. M. Mendell
No abstract is available for this article. [source]


Microreview: Regulation of mammalian defensin expression by Toll-like receptor-dependent and independent signalling pathways

CELLULAR MICROBIOLOGY, Issue 10 2005
Oren Froy
Summary The immune system consists of innate and adaptive immune responses. The innate immune system confers non-specific protection against a large number of pathogens, hence, serving as the first line of defence. The innate immune system utilizes Toll-like receptors (TLRs) to recognize and bind pathogen-associated molecular patterns (PAMPs). Binding of PAMPs leads to TLR activation, which, in turn, initiates MAPK- or NF-,B-dependent cascades that culminate in a proinflammatory response. This response involves the secretion of cytokines, chemokines and broad-spectrum antibacterial substances, such as defensins. Increased defensin synthesis is also mediated by the activation of receptors other than TLRs, such as NOD2, IL-17R and PAR-2. This review summarizes the recently characterized signalling pathways leading to increased defensin synthesis as well as the pathway by which defensins activate TLRs on immature dendritic and memory T cells. Thus, not only do defensins eliminate pathogens, but they also recruit the adaptive immune system in instances of infection and/or inflammation. [source]