Anchorage-dependent Cells (anchorage-dependent + cell)

Distribution by Scientific Domains

Selected Abstracts

Paradoxical enhancement of oxidative cell injury by overexpression of heme oxygenase-1 in an anchorage-dependent cell ECV304

Keiko Maruhashi
Abstract There has been increasing evidence suggesting the potent anti-inflammatory roles of heme oxygenase-1 (HO-1) in protecting renal tubular epithelial cells, vascular endothelial cells, and circulating monocytes. Based on these findings, novel therapeutic interventions have been proposed to control the expression of endothelial HO-1 levels to ameliorate various vascular diseases. We evaluated the effect of HO-1 gene transfer into an anchorage-dependent cell, ECV304. Effect of HO-1 production on the cell injury induced by hydrogen peroxide was evaluated after hemin stimulation and after HO-1 gene transfection. Morphological changes and the induction of various anti-apoptotic proteins were examined at the same time. Levels of HO-1 expression were variable in different clones of HO-1-transfected ECV304 cells. Among these, the clones with moderate levels of HO-1 expression were significantly more resistant to oxidative stress. In contrast, those with the highest levels of HO-1 exhibited paradoxically enhanced susceptibility to oxidative injury. Interestingly, the cell survival after oxidative stress was in parallel with the levels of Bcl-2 expression and of fibronectin receptor, ,5 integrin. It is suggested from these results, that excessive HO-1 not only leads to enhanced cell injury, but also prolongs the repair process of the injured endothelial tissue. However, HO-1 reduces the oxidative cell injury and protects the endothelial cells, if its expression is appropriately controlled. © 2004 Wiley-Liss, Inc. [source]

From anchorage dependent proliferation to survival: Lessons from redox signalling

IUBMB LIFE, Issue 5 2008
Paola Chiarugi
Abstract Anchorage to extracellular matrix (ECM) is essential for the execution of the mitotic program of nontransformed cells as they need simultaneous signals starting from mitogenic molecules, as growth factors (GFs), and adhesive agents belonging to ECM. Reactive oxygen species play a key function during both GF and integrin receptor signalling and are therefore recognised to have a synergistic function with several others transducers for anchorage-dependent growth (ADG). Indeed, redox-regulated proteins include protein tyrosine phosphatases, protein tyrosine kinases, small GTPases, cytoskeleton proteins, as well as several transcription factors. In this review, we focus on the role of reactive oxygen species (ROS) as key second messengers granting a proper executed mitosis for anchorage-dependent cells through redox regulation of several downstream targets. Besides, redox signals elicited by ECM contact assure a protection from anoikis, a specific apoptosis induced by lack of anchorage. Cancer cells frequently show a deregulation of ROS production and a constitutive oxidative stress has been associated to the achievement of an invasive phenotype. Hence, in cancer cells, the constitutive deregulation of both mitogenic and survival pathways, likely mimicking autocrine/adhesive signals, helps to guide the transformed cells to escape the innate apoptotic response to abolish the signals started by cell/ECM contact, thus sustaining the spreading of anchorage-independent cancer cells and the metastases growth. © 2008 IUBMB IUBMB Life, 60(5): 301,307, 2008 [source]

Continuous supply of TGF,3 via adenoviral vector promotes type I collagen and viability of fibroblasts in alginate hydrogel

Yongchang Yao
Abstract In recent years, transforming growth factor-,3 (TGF,3) has interested more and more researchers with its competence in engineered histogenesis. In the present study we employed recombinant adenoviral vectors to deliver the constitutively active TGF,3 gene to human dermal fibroblasts, which could maintain the continuous secretion of TGF,3 from the cells. The expression of type I collagen in the Ad-TGF,3 group increased significantly in comparison with other three groups: Neg (cells without treatment of the adenovirus), Ad-null (cells with treatment of the adenovirus, without the inserted gene) and Ad-shRNA (cells with treatment of the adenovirus encoding shRNA specific for type I collagen). Additionally, we demonstrated that TGF,3 enhanced the expression of Smad4 while inhibiting that of MMP-9, thus promoting the collagen transcription via the Smad signal transduction pathway and restraining collagen degradation by MMP-9, which contributed to the increasing type I collagen expression level. As type I collagen mediates cell,material interactions by providing anchorage, the viability of encapsulated fibroblasts in Ad-TGF,3 group was significantly higher than that in other three groups. Accordingly, this approach forms an effective way to improve the compatibility of non-adhesive hydrogels containing anchorage-dependent cells. Copyright © 2010 John Wiley & Sons, Ltd. [source]

Starch,poly(,-caprolactone) and starch,poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour

M. E. Gomes
Abstract In scaffold-based tissue engineering strategies, the successful regeneration of tissues from matrix-producing connective tissue cells or anchorage-dependent cells (e.g. osteoblasts) relies on the use of a suitable scaffold. This study describes the development and characterization of SPCL (starch with ,-polycaprolactone, 30:70%) and SPLA [starch with poly(lactic acid), 30:70%] fibre-meshes, aimed at application in bone tissue-engineering strategies. Scaffolds based on SPCL and SPLA were prepared from fibres obtained by melt-spinning by a fibre-bonding process. The porosity of the scaffolds was characterized by microcomputerized tomography (µCT) and scanning electron microscopy (SEM). Scaffold degradation behaviour was assessed in solutions containing hydrolytic enzymes (,-amylase and lipase) in physiological concentrations, in order to simulate in vivo conditions. Mechanical properties were also evaluated in compression tests. The results show that these scaffolds exhibit adequate porosity and mechanical properties to support cell adhesion and proliferation and also tissue ingrowth upon implantation of the construct. The results of the degradation studies showed that these starch-based scaffolds are susceptible to enzymatic degradation, as detected by increased weight loss (within 2 weeks, weight loss in the SPCL samples reached 20%). With increasing degradation time, the diameter of the SPCL and SPLA fibres decreases significantly, increasing the porosity and consequently the available space for cells and tissue ingrowth during implantation time. These results, in combination with previous cell culture studies showing the ability of these scaffolds to induce cell adhesion and proliferation, clearly demonstrate the potential of these scaffolds to be used in tissue engineering strategies to regenerate bone tissue defects. Copyright © 2008 John Wiley & Sons, Ltd. [source]