Ancestral Lineages (ancestral + lineage)

Distribution by Scientific Domains


Selected Abstracts


Phylogeographic analysis of a recent radiation of Enallagma damselflies (Odonata: Coenagrionidae)

MOLECULAR ECOLOGY, Issue 10 2002
J. Turgeon
Abstract A phylogenetic hypothesis revealed two recent radiations among species of Enallagma damselflies, and extensive ecological work suggests that both adaptive and nonadaptive processes are involved in these radiations. We analysed the geographical pattern of genetic variability at 868 bp of mitochondrial DNA (mtDNA) among 283 individuals of 5 species displaying little ecological differentiation to identify the ancestral lineage, support their independent evolutionary trajectories and identify historical events and the underlying mechanism for one of these radiations. Nested clade analysis results clearly support a past event of range fragmentation in E. hageni. These Atlantic and Continental hageni races experienced distinct dispersal histories and still maintain nearly nonoverlapping ranges All four other species derive from the Continental hageni. Whereas three species endemic to the Atlantic coastal plain show little genetic variation, E. ebrium shared several haplotypes with the Continental hageni. Contrasting levels of genetic differentiation between E. hageni and E. ebrium in geographical areas associated with distinct events of E. hageni's recent history support the recent origin of this species. Altogether, our results are compatible with a process of radiation via divergence in mate recognition systems within the Continental hageni race following secondary contacts between putative refugial races. [source]


Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction

CELLULAR MICROBIOLOGY, Issue 8 2008
Christoph Dehio
Summary Type IV secretion systems (T4SSs) are transporters of Gram-negative bacteria that mediate interbacterial DNA transfer, and translocation of virulence factors into eukaryotic host cells. The ,-proteobacterial genus Bartonella comprises arthropod-borne pathogens that colonize endothelial cells and erythrocytes of their mammalian reservoir hosts, thereby causing long-lasting intraerythrocytic infections. The deadly human pathogen Bartonella bacilliformis holds an isolated position in the Bartonella phylogeny as a sole representative of an ancestral lineage. All other species evolved in a separate ,modern' lineage by radial speciation and represent highly host-adapted pathogens of limited virulence potential. Unlike B. bacilliformis, the species of the modern lineage encode at least one of the closely related T4SSs, VirB/VirD4 or Vbh. These VirB-like T4SSs represent major host adaptability factors that contributed to the remarkable evolutionary success of the modern lineage. At the molecular level, the VirB/VirD4 T4SS was shown to translocate several effector proteins into endothelial cells that subvert cellular functions critical for establishing chronic infection. A third T4SS, Trw, is present in a sub-branch of the modern lineage. Trw does not translocate any known effectors, but produces multiple variant pilus subunits critically involved in the invasion of erythrocytes. The T4SSs laterally acquired by the bartonellae have thus adopted highly diverse functions during infection, highlighting their versatility as pathogenicity factors. [source]


Phylogenetic analysis of developmental and postnatal mouse cell lineages

EVOLUTION AND DEVELOPMENT, Issue 1 2010
Stephen J. Salipante
SUMMARY Fate maps depict how cells relate together through past lineage relationships, and are useful tools for studying developmental and somatic processes. However, with existing technologies, it has not been possible to generate detailed fate maps of complex organisms such as the mouse. We and others have therefore proposed a novel approach, "phylogenetic fate mapping," where patterns of somatic mutation carried by the individual cells of an animal are used to retrospectively deduce lineage relationships through phylogenetic inference. Here, we have cataloged genomic polymorphisms at 324 mutation-prone polyguanine tracts for nearly 300 cells isolated from a single mouse, and have explored the cells' lineage relationships both phylogenetically and through a network-based approach. We present a model of mouse embryogenesis, where an early period of substantial cell mixing is followed by more coherent growth of clones later. We find that cells from certain tissues have greater numbers of close relatives in other specific tissues than expected from chance, suggesting that those populations arise from a similar pool of ancestral lineages. Finally, we have investigated the dynamics of cell turnover (the frequency of cell loss and replacement) in postnatal tissues. This work offers a longitudinal study of developmental lineages, from conception to adulthood, and provides insight into basic questions of mouse embryology as well as the somatic processes that occur after birth. [source]


Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia

MOLECULAR ECOLOGY, Issue 10 2008
JULIE GODBOUT
Abstract The Canadian side of the Pacific Northwest was almost entirely covered by ice during the last glacial maximum, which has induced vicariance and genetic population structure for several plant and animal taxa. Lodgepole pine (Pinus contorta Dougl. ex. Loud.) has a wide latitudinal and longitudinal distribution in the Pacific Northwest. Our main objective was to identify relictual signatures of glacial vicariance in the population structure of the species and search for evidence of distinct glacial refugia in the Pacific Northwest. A maternally inherited mitochondrial DNA minisatellite-like marker was used to decipher haplotype diversity in 91 populations of lodgepole pine located across the natural range. Overall population differentiation was sizeable (GST = 0.365 and RST = 0.568). Four relatively homogeneous groups of populations, possibly representative of as many genetically distinct glacial populations, were identified for the two main subspecies, ssp. latifolia and ssp. contorta. For ssp. contorta, one glacial lineage is suggested to have been located at high latitudes and possibly off the coast of mainland British Columbia (BC), while the other is considered to have been located south of the ice sheet along the Pacific coast. For ssp. latifolia, two genetically distinct glacial populations probably occurred south of the ice sheet: in the area bounded by the Cascades and Rocky Mountains ranges, and on the eastern side of the Rockies. A possible fifth refugium located in the Yukon may have also been present for ssp. latifolia. Zones of contact between these ancestral lineages were also apparent in interior and northern BC. These results indicate the role of the Queen Charlotte Islands and the Alexander Archipelago as a refugial zone for some Pacific Northwest species and the vicariant role played by the Cascades and the American Rocky Mountains during glaciation. [source]


Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection

MOLECULAR ECOLOGY, Issue 3 2006
AXEL MEYER
Abstract The swordlike exaggerated caudal fin extensions of male swordtails are conspicuous traits that are selected for through female choice. Swords are one of only few examples where the hypothesis of a pre-existing bias is believed to apply for the evolution of a male trait. Previous laboratory experiments demonstrated that females prefer males with longer swords and even females from some swordless species show an affiliation for males of sworded species. Earlier phylogenetic studies based on maternally inherited mitochondrial DNA placed the sworded southern swordtail Xiphophorus clemenciae with swordless platies, contradicting its morphology-based evolutionary affinities. The analyses of new nuclear DNA markers now recover its traditional phylogenetic placement with other southern swordtails, suggesting that this species was formed by an ancient hybridization event. We propose that sexual selection through female choice was the likely process of hybrid speciation, by mating of platy females with males of an ancestral swordtail lineage. In artificial crosses of descendent species from the two potential ancestral lineages of X. clemenciae the hybrid and backcross males have swords of intermediate lengths. Additionally, mate choice experiments demonstrate that hybrid females prefer sworded males. These experimental lines of evidence make hybridization through xeno-specific sexual selection by female choice the likely mechanism of speciation. [source]


Plastid DNA variation in the Dactylorhiza incarnata/maculata polyploid complex and the origin of allotetraploid D. sphagnicola (Orchidaceae)

MOLECULAR ECOLOGY, Issue 10 2003
M. Hedrén
Abstract To obtain further information on the polyploid dynamics of the the Dactylorhiza incarnata/maculata polyploid complex and the origin of the allotetraploid D. sphagnicola (Orchidaceae), plastid DNA variation was studied in 400 plants from from Sweden and elsewhere in Europe and Asia Minor by means of polymerase chain reaction,restriction fragment length polymorphisms (PCR-RFLPs) and sequencing. Allotetraploid taxa in Europe are known have evolved by multiple independent polyploidization events following hybridization between the same set of two distinct ancestral lineages. Most allotetraploids have inherited the plastid genome from parents similar to D. maculata sensu lato, which includes, e.g. the diploid D. fuchsii and the autotetraploid D. maculata sensu stricto. D. sphagnicola carries a separate plastid haplotype different from the one found in other allotetraploid taxa, which is in agreement with an independent origin from the parental lineages. Some of the remaining allotetraploids have local distributions and appear to be of postglacial origin, whereas still other allotetraploids may be of higher age, carrying plastid haplotypes that have not been encountered in present day representatives of the parental lineages. Introgression and hybridization between diploids and allotetraploids, and between different independently derived allotetraploids may further have contributed to genetic diversity at the tetraploid level. Overall, the Dactylorhiza polyploid complex illustrates how taxon diversity and genetic diversity may be replenished rapidly in a recently glaciated area. [source]