Ancestor Gene (ancestor + gene)

Distribution by Scientific Domains


Selected Abstracts


Molecular cloning and sequence analysis of an ascidian egg ,-N-acetylhexosaminidase with a potential role in fertilization

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2003
Ryo Koyanagi
,-N-Acetylhexosaminidase, which is found almost ubiquitously in sperm of invertebrates and vertebrates, supposedly mediates a carbohydrate-based transient sperm,egg coat binding. In ascidians and mammals, ,-hexosaminidase released at fertilization from eggs has been proposed to modify sperm receptor glycoproteins of the egg envelope, thus setting up a block to polyspermy. Previously, it was shown that in potential sperm receptor glycoproteins of the ascidian Phallusia mammillata, N-acetylglucosamine is the prevailing glycoside residue and that the egg harbors three active molecular forms of ,-hexosaminidase. In the present study, P. mammillata,-hexosaminidase cDNA was isolated from an ovarian cDNA library and characterized. The deduced amino acid sequence showed a high similarity with other known ,-hexosaminidases; however, P. mammillata,-hexosaminidase had a unique potential N-glycosylation site. A phylogenetic analysis suggested that P. mammillata,-hexosaminidase developed independently after having branched off from the common ancestor gene of the chordate enzyme before two isoforms of the mammalian enzyme appeared. In situ hybridization revealed stage-specific expression of ,-hexosaminidase mRNA during oogenesis in the oocyte and in the accessory test and follicle cells. This suggests that the three egg ,-hexosaminidase forms are specific for the oocyte, test cells and follicle cells. [source]


Functional characterization of artemin, a ferritin homolog synthesized in Artemia embryos during encystment and diapause

FEBS JOURNAL, Issue 4 2007
Tao Chen
Oviparously developing embryos of the crustacean Artemia franciscana encyst and enter diapause, exhibiting a level of stress tolerance seldom seen in metazoans. The extraordinary stress resistance of encysted Artemia embryos is thought to depend in part on the regulated synthesis of artemin, a ferritin superfamily member. The objective of this study was to better understand artemin function, and to this end the protein was synthesized in Escherichia coli and purified to apparent homogeneity. Purified artemin consisted of oligomers approximately 700 kDa in molecular mass that dissociated into monomers and a small number of dimers upon SDS/PAGE. Artemin inhibited heat-induced aggregation of citrate synthase in vitro, an activity characteristic of molecular chaperones and shown here to be shared by apoferritin and ferritin. This is the first report that apoferritin/ferritin may protect cells from stress other than by iron sequestration. Stably transfected mammalian cells synthesizing artemin were more resistant to heat and H2O2 than were cells transfected with vector only, actions also shared by molecular chaperones such as the small heat shock proteins. The data indicate that artemin is a structurally modified ferritin arising either from a common ancestor gene or by duplication of the ferritin gene. Divergence, including acquisition of a C-terminal peptide extension and ferroxidase center modification, eliminated iron sequestration, but chaperone activity was retained. Therefore, because artemin accumulates abundantly during development, it has the potential to protect embryos from stress during encystment and diapause without adversely affecting iron metabolism. [source]


Analyses of the CYP11B gene family in the guinea pig suggest the existence of a primordial CYP11B gene with aldosterone synthase activity

FEBS JOURNAL, Issue 15 2002
Hannes E. Bülow
In this study we describe the isolation of three genes of the CYP11B family of the guinea pig. CYP11B1 codes for the previously described 11,-hydroxylase [Bülow, H.E.,Möbius, K., Bähr, V. & Bernhardt, R. (1996) Biochem. Biophys. Res. Commun. 221, 304,312] while CYP11B2 represents the aldosterone synthase gene. As no expression for CYP11B3 was detected this gene might represent a pseudogene. Transient transfection assays show higher substrate specificity for its proper substrate for CYP11B1 as compared to CYP11B2, which could account for the zone-specific synthesis of mineralocorticoids and glucocorticoids, respectively. Thus, CYP11B2 displayed a fourfold higher ability to perform 11,-hydroxylation of androstenedione than CYP11B1, while this difference is diminished with the size of the C17 substituent of the substrate. Furthermore, analyses with the electron transfer protein adrenodoxin indicate differential sensitivity of CYP11B1 and CYP11B2 as well as the three hydroxylation steps catalysed by CYP11B2 to the availability of reducing equivalents. Together, both mechanisms point to novel protein intrinsic modalities to achieve tissue-specific production of mineralocorticoids and glucocorticoids in the guinea pig. In addition, we conducted phylogenetic analyses. These experiments suggest that a common CYP11B ancestor gene that possessed both 11,-hydroxylase and aldosterone synthase activity underwent a gene duplication event before or shortly after the mammalian radiation with subsequent independent evolution of the system in different lines. Thus, a differential mineralocorticoid and glucocorticoid synthesis might be an exclusive achievement of mammals. [source]


Gene structure of an antimicrobial peptide from mandarin fish, Siniperca chuatsi (Basilewsky), suggests that moronecidins and pleurocidins belong in one family: the piscidins

JOURNAL OF FISH DISEASES, Issue 6 2007
B J Sun
Abstract The gene of piscidin, an antimicrobial peptide, has been cloned from the mandarin fish, Siniperca chuatsi. From the first transcription initiation site, the mandarin fish piscidin gene extends 1693 nucleotides to the end of the 3, untranslated region and contains four exons and three introns. A predicted 79-residue prepropeptide consists of three domains: a signal peptide (22 aa), a mature peptide (22 aa) and a C-terminal prodomain (35 aa). The shortage of XQQ motif in the prodomain of mandarin fish piscidin and the similar gene structure between moronecidins (piscidins) and pleurocidins may indicate that they are derived from the same ancestor gene. We thus suggest that piscidin should be used as a terminology for these antimicrobial peptides in the future. The mandarin fish piscidin mRNA was abundant in intestine, spleen, pronephros and kidney analysed by real-time polymerase chain reaction. After stimulation with lipopoly saccharides (LPS), a marked increase in transcripts was observed in most tissues, indicating that piscidin is not only a constitutively expressed molecule, but also has an increased response to bacterial infection. The synthetic, amidated mandarin fish piscidin exhibited different antimicrobial activity against different fish bacterial pathogens, especially against species of Aeromonas, which may to certain extent reflect the pathogenicity of these bacteria. [source]


Inulin metabolism in dicots: chicory as a model system

PLANT CELL & ENVIRONMENT, Issue 6 2002
A. Van Laere
Abstract Fructans are fructose-based oligo- and polymers that serve as reserve carbohydrates in many plant species. The original Edelman and Jefford model for GFn inulin type fructan biosynthesis was confirmed by the de novo synthesis of fructans in vitro as well as by heterologous expression of the respective cDNAs in non-fructan plants. Now the model can be extended for the biosynthesis of Fn inulin type fructans. Recent progress has now succeeded in elucidating the biochemistry and molecular biology of fructan biodegradation in chicory, an economically important species used for commercial inulin extraction. Unlike fructan biosynthetic genes that originated from vacuolar type invertase, plant fructan exohydrolases seem to have evolved from a cell wall invertase ancestor gene that later obtained a low iso-electric point and a vacuolar targeting signal. Using chicory as a model system, expression analysis revealed that fructan enzymes are mainly controlled at the transcriptional level. [source]


The fallaxidin peptides from the skin secretion of the Eastern Dwarf Tree Frog Litoria fallax.

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2008
Sequence determination by positive, cDNA cloning of the fallaxidins, negative ion electrospray mass spectrometry: antimicrobial activity
The glandular skin secretion of the Eastern Dwarf Tree Frog Litoria fallax contains nine peptides named fallaxidins. The sequences of these peptides were elucidated using a combination of positive and negative electrospray mass spectrometry together with Edman sequencing. Among these peptides are: (i) fallaxidins 1.1 and 2.1 which have the sequences YFPIPI-NH2 and FWPFM-NH2. The activities of these peptides are unknown, but it has been shown that they are not smooth muscle active, opioids or antimicrobially active, nor do they effect proliferation of lymphocytes; (ii) two weakly active antibiotics, fallaxidins 3.1 and 3.2 (e.g. fallaxidin 3.1, GLLDLAKHVIGIASKL-NH2), and a moderately active antibiotic fallaxidin 4.1 (GLLSFLPKVIGVIGHLIHPPS-OH). Fallaxidin 4.1 has an unusual sequence for an antibiotic, containing three Pro residues together with a C-terminal CO2H group. cDNA cloning has confirmed the identity of the nine isolated peptides from L. fallax, together with five additional peptides not detected in the peptide profile. The pre-regions of the nine preprofallaxidins are conserved and similar to those of the caerin peptides from L. caerulea and L. splendida, suggesting that the fallaxidin and caerin peptides, although significantly different in sequence, originated from a common ancestor gene. Copyright © 2008 John Wiley & Sons, Ltd. [source]