Home About us Contact | |||
Increased Tolerance (increased + tolerance)
Selected AbstractsRole of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrataFEMS YEAST RESEARCH, Issue 3 2010Taiga Miyazaki Abstract The Slt2 mitogen-activated protein kinase pathway plays a major role in maintaining fungal cell wall integrity. In this study, we investigated the effects of SLT2 deletion and overexpression on drug susceptibility and virulence in the opportunistic fungal pathogen Candida glabrata. While the ,slt2 strain showed decreased tolerance to elevated temperature and cell wall-damaging agents, the SLT2 -overexpressing strain exhibited increased tolerance to these stresses. A mutant lacking Rlm1, a transcription factor downstream of Slt2, displayed a cell wall-associated phenotype intermediate to that of the ,slt2 strain. When RLM1 was overexpressed, micafungin tolerance was increased in the wild-type strain and partial restoration of the drug tolerance was observed in the ,slt2 background. It was also demonstrated that echinocandin-class antifungals were more effective against C. glabrata under acidic conditions or when used concurrently with the chitin synthesis inhibitor nikkomycin Z. Finally, in a mouse model of disseminated candidiasis, the deletion and overexpression of C. glabrata SLT2 resulted in mild decreases and increases, respectively, in the CFUs from murine organs compared with the wild-type strain. These fundamental data will help in further understanding the mechanisms of cell wall stress response in C. glabrata and developing more effective treatments using echinocandin antifungals in clinical settings. [source] Molecular mechanism of preconditioningIUBMB LIFE, Issue 4 2008Manika Das Abstract During the last 20 years, since the appearance of the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. PC is defined as an increased tolerance to ischemia and reperfusion induced by previous sublethal period ischemia. This is the most powerful mechanism known to date for limiting the infract size. This adaptation occurs in a biphasic pattern (i) early preconditioning (lasts for 2,3 h) and (ii) late preconditioning (starting at 24 h lasting until 72,96 h after initial ischemia). Early preconditioning is more potent than delayed preconditioning in reducing infract size. Late preconditioning attenuates myocardial stunning and requires genomic activation with de novo protein synthesis. Early preconditioning depends on adenosine, opioids and to a lesser degree, on bradykinin and prostaglandins, released during ischemia. These molecules activate G-protein-coupled receptor, initiate activation of KATP channel and generate oxygen-free radicals, and stimulate a series of protein kinases, which include protein kinase C, tyrosine kinase, and members of MAP kinase family. Late preconditioning is triggered by a similar sequence of events, but in addition essentially depends on newly synthesized proteins, which comprise iNOS, COX-2, manganese superoxide dismutase, and possibly heat shock proteins. The final mechanism of PC is still not very clear. The present review focuses on the possible role signaling molecules that regulate cardiomyocyte life and death during ischemia and reperfusion. © 2008 IUBMB IUBMB Life, 60(4): 199,203, 2008 [source] Interactions of Salmonella enterica with lettuce leavesJOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2009Y. Kroupitski Abstract Aims:, To investigate the interactions of Salmonella enterica with abiotic and plant surfaces and their effect on the tolerance of the pathogen to various stressors. Methods and Results:,Salmonella strains were tested for their ability to form biofilm in various growth media using a polystyrene plate model. Strong biofilm producers were found to attach better to intact Romaine lettuce leaf tissue compared to weak producers. Confocal microscopy and viable count studies revealed preferential attachment of Salmonella to cut-regions of the leaf after 2 h at 25°C, but not for 18 h at 4°C. Storage of intact lettuce pieces contaminated with Salmonella for 9 days at 4°C resulted only in small changes in population size. Exposure of lettuce-associated Salmonella cells to acidic conditions (pH 3·0) revealed increased tolerance of the attached vs planktonic bacteria. Conclusions:, Biofilm formation on polystyrene may provide a suitable model to predict the initial interaction of Salmonella with cut Romaine lettuce leaves. Association of the pathogen with lettuce leaves facilitates its persistence during storage and enhances its acid tolerance. Significance and Impact of the Study:, Understanding the interactions between foodborne pathogens and lettuce might be useful in developing new approaches to prevent fresh produce-associated outbreaks. [source] Impact of spray application methodology on the development of resistance to cypermethrin and spinosad by fall armyworm Spodoptera frugiperda (JE Smith)PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2006Ali Al-Sarar Abstract The development of resistance to an insecticide under various types of application method has yet to be reported in the literature. Five fall armyworm Spodoptera armigera (JE Smith) colonies were reared in a chamber for ten generations before starting topical application bioassays. From each colony, 200,500 third,fourth-instar larvae were fed for 72 h on corn plants sprayed with cypermethrin or spinosad at minimum application rate (20 g ha,1) using a small droplet size nozzle XR8001VS (volume median diameter Dv0.5 = 163 µm) or a large droplet size nozzle XR8008VS (Dv0.5 = 519 µm). Surviving larvae were transferred to untreated corn leaves to complete their life cycle. Next-generation third-instar larvae of each colony were topically dosed with technical cypermethrin or spinosad at 1 µL per larva, and mortality was recorded 24 h post-treatment. The results indicated that cypermethrin demonstrated an insecticidal activity greater than that of spinosad, and the cypermethrin regression lines moved to the right faster than those for spinosad, indicating an increased tolerance of cypermethrin. Generally, larvae from all generations (F1,F7) under the XR8008VS treatments were less susceptible to cypermethrin and developed resistance faster and to higher levels than larvae from the XR8001VS treatments. The confidence limits (95%) of LD50 for all spinosad treatments indicated that there was no significant difference from the LD50 value of the susceptible reference strain. The results are a first indication that application technology/insecticide reaction may affect the rapidity of resistance development in certain pest/plant scenarios, but field studies are needed to confirm this conclusion. Copyright © 2006 Society of Chemical Industry [source] Relative contributions of nine genes in the pathway of histidine biosynthesis to the control of free histidine concentrations in Arabidopsis thalianaPLANT BIOTECHNOLOGY JOURNAL, Issue 6 2009Jonathan D. Rees Summary Despite the functional importance of histidine (His) as an essential amino acid in proteins and as a metal-coordinating ligand, comparatively little is known about the regulation of its biosynthesis in plants and the potential for metabolic engineering of this pathway. To investigate the contribution of different steps in the pathway to overall control of His biosynthesis, nine His biosynthetic genes were individually over-expressed in Arabidopsis thaliana to determine their effects on free amino acid pools. Constitutive, CaMV 35S -driven over-expression of the cDNAs encoding either isoform of ATP-phosphoribosyltransferase (ATP-PRT), the first enzyme in the pathway, was sufficient to increase the pool of free His by up to 42-fold in shoot tissue of Arabidopsis, with negligible effect on any other amino acid. In contrast, over-expression of cDNAs for seven other enzymes in the biosynthetic pathway had no effect on His content, suggesting that control of the pool of free His resides largely with ATP-PRT activity. Over-expression of ATP-PRT and increased His content had a negative pleiotropic effect on plant biomass production in 35S:PRT1 lines, but this effect was not observed in 35S:PRT2 lines. In the presence of 100 µM Ni, which was inhibitory to wild-type plants, a strong positive correlation was observed between free His content and biomass production, indicating that the metabolic cost of His overproduction was outweighed by the benefit of increased tolerance to Ni. His-overproducing plants also displayed somewhat elevated tolerance to Co and Zn, but not to Cd or Cu, indicating chemical selectivity in intracellular metal binding by His. [source] Overexpression of bacterial catalase in tomato leaf chloroplasts enhances photo-oxidative stress tolerancePLANT CELL & ENVIRONMENT, Issue 12 2003E.-A. MOHAMED ABSTRACT The Escherichia coli gene katE, which is driven by the promoter of the Rubisco small subunit gene of tomato, rbcS3C, was introduced into a tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens -mediated transformation. Catalase activity in progeny from transgenic plants was approximately three-fold higher than that in wild-type plants. Leaf discs from transgenic plants remained green at 24 h after treatment with 1 µm paraquat under moderate light intensity, whereas leaf discs from wild-type plants showed severe bleaching after the same treatment. Moreover, ion leakage from transgenic leaf discs was significantly less than that from wild-type leaf discs at 24 h after treatment with 1 µm paraquat and 10 mm H2O2, respectively, under moderate light intensity. To evaluate the efficiency of the E. coli catalase to protect the whole transgenic plant from the oxidative stress, transgenic and wild-type plants were sprayed with 100 µm paraquat and exposed to high light illumination (800 µmol m,2 s,1). After 24 h, the leaves of the transgenic plants were less damaged than the leaves of the wild-type plants. The catalase activity and the photosynthesis activity (indicated by the Fv/Fm ratio) were less affected by paraquat treatment in leaves of transgenic plants, whereas the activities of the chloroplastic ascorbate peroxidase isoenzymes and the ascorbate content decreased in both lines. In addition, the transgenic plants showed increased tolerance to the oxidative damage (decrease of the CO2 fixation and photosystem II activity and increase of the lipid peroxidation) caused by drought stress or chilling stress (4 °C) under high light intensity (1000 µmol m,2 s,1). These results indicate that the expression of the catalase in chloroplasts has a positive effect on the protection of the transgenic plants from the photo-oxidative stress invoked by paraquat treatment, drought stress and chilling stress. [source] Reciprocation and interchange in wild Japanese macaques: grooming, cofeeding, and agonistic supportAMERICAN JOURNAL OF PRIMATOLOGY, Issue 12 2006Raffaella Ventura Abstract Social primates spend a significant proportion of their time exchanging grooming with their group companions. Although grooming is mainly exchanged in kind, given its hygienic and tension-reducing functions, it is still debated whether grooming also provides some social benefits, such as preferential access to resources (e.g., food or mating partners). In this study we analyzed grooming distribution among wild female Japanese macaques living in two groups on Yakushima. We tested the tendency of monkeys to reciprocate the amount of grooming received, and to direct their grooming up the hierarchy. Then we analyzed the relation of grooming to three of its possible benefits: reduced aggression, increased tolerance over food, and agonistic support against a male aggressor. The data were analyzed by means of row-wise matrix correlations. Grooming was highly reciprocated (i.e., exchanged in kind) and directed up the hierarchy in both the study groups. No significant relationship was found between grooming and aggression. Conversely, grooming favored tolerance over food, since it was positively correlated with presence on the same food patch, close proximity, and close approaches (both within 1,m) during feeding. Grooming was also positively related to agonistic support against adult males, although this relationship became nonsignificant when we controlled for kinship. Although these results are not definitive, they suggest that monkeys may derive various social benefits from grooming. This conclusion is supported by the fact that in various primate species animals tend to prefer high-ranking individuals as grooming partners. Am. J. Primatol. 68:1138,1149, 2006. © 2006 Wiley-Liss, Inc. [source] Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytesAPMIS, Issue 7 2009MARIA VAN GENNIP Many of the virulence factors produced by the opportunistic human pathogen Pseudomonas aeruginosa are quorum-sensing (QS) regulated. Among these are rhamnolipids, which have been shown to cause lysis of several cellular components of the human immune system, e.g. monocyte-derived macrophages and polymorphonuclear leukocytes (PMNs). We have previously shown that rhamnolipids produced by P. aeruginosa cause necrotic death of PMNs in vitro. This raises the possibility that rhamnolipids may function as a ,biofilm shield'in vivo, which contributes significantly to the increased tolerance of P. aeruginosa biofilms to PMNs. In the present study, we demonstrate the importance of the production of rhamnolipids in the establishment and persistence of P. aeruginosa infections, using an in vitro biofilm system, an intraperitoneal foreign-body model and a pulmonary model of P. aeruginosa infections in mice. Our experimental data showed that a P. aeruginosa strain, unable to produce any detectable rhamnolipids due to an inactivating mutation in the single QS-controlled rhlA gene, did not induce necrosis of PMNs in vitro and exhibited increased clearance compared with its wild-type counterpart in vivo. Conclusively, the results support our model that rhamnolipids are key protective agents of P. aeruginosa against PMNs. [source] |