Home About us Contact | |||
Increased Protein (increased + protein)
Terms modified by Increased Protein Selected AbstractsAnti-inflammatory responses and oxidative stress in Nippostrongylus brasiliensis -induced pulmonary inflammationPARASITE IMMUNOLOGY, Issue 1 2002Kathryn S. McNeil summary Migration of L3 larvae of Nippostrongylus brasiliensis through the lungs of the rat, during primary infection, was studied at 24 h, 72 h and 8 days. At 24 h p.i., there was evidence of damage to lung epithelial cells and microvasculature, with increased protein and ,-glutamyl transpeptidase in the bronchoalveolar lavage (BAL) fluid. However, there was little evidence of inflammatory cell recruitment. At 24 h p.i., there was a significant reduction in the inflammatory cytokine tumour necrosis factor ,. Superoxide (O2,·) production was also reduced, accompanied by an increase in superoxide dismutase activity. Lipid peroxidation was reduced at 24 h p.i. and L3 larvae were shown to possess high levels of glutathione compared to host lung tissue. Nitric oxide, detected as nitrite, was produced in BAL fluid, and inducible nitric oxide synthase protein was increased by 72 h p.i. There was evidence of peroxynitrite production throughout the infection period with specific protein bands nitrosylated at 75, 30 and 25 kDa. It appears that despite early evidence of lung damage, the inflammation was reduced in response to L3 larvae of N. brasiliensis. [source] Comparative proteome approach to characterize the high-pressure stress response of Lactobacillus sanfranciscensis DSM 20451TPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2006Sebastian Hörmann Abstract High hydrostatic pressure (HHP) exerts diverse effects on microorganisms, leading to stress response and cell death. While inactivation of microorganisms by lethal HHP is well investigated in the context of food preservation and the hygienic safety of minimal food processes, sublethal HHP stress response and its effect on adaptation and cross-protection is less understood. In this study, the HHP stress response of Lactobacillus sanfranciscensis was characterized and compared with cold, heat, salt, acid and starvation stress at the proteome level by using 2-DE so as to provide insight into general versus specific stress responses. Sixteen proteins were found to be affected by HHP and were identified by using N-terminal amino acid sequencing and MS. Only one slightly increased protein was specific to the HHP response and showed homology to a clp protease. The other proteins were influenced by most of the investigated stresses in a similar way as HHP. The highest similarity in the HHP proteome was found to be with cold- and NaCl-stressed cells, with 11,overlapping proteins. At the proteome level, L.,sanfranciscensis appears to use overlapping subsets of stress-inducible proteins rather than stereotype responses. Our data suggest that a specific pressure response does not exist in this bacteria. [source] Dietary strategies to improve the growth and feed utilization of barramundi, Lates calcarifer under high water temperature conditionsAQUACULTURE NUTRITION, Issue 4 2010B. GLENCROSS Abstract Several dietary strategies to ameliorate poorer growth observed to occur at temperatures above the upper thermal optima were examined with juvenile barramundi (Lates calcarifer). A reference (REF) and three experimental diets, one with an increased protein to energy ratio (PRO), another with an increased level of the amino acid histidine (HIS) and a third with supplementation of dietary nucleotides (NUC), were each fed to fish at either 30 °C or 37 °C for a 28-day period. Growth was affected by both temperature and diet. Fish fed the PRO diet at 30 °C grew fastest, but not faster than those fed the NUC diet at the same temperature. The addition of the amino acid histidine to the diet did not improve growth rates at either temperature. At water temperatures of 37 °C, only the fish fed the PRO diet had growth rates equivalent to those of fish at the 30 °C temperatures. Other key factors including feed intake, feed conversion rate, nutrient and energy retention and plasma enzymology were also all affected by temperature and diet. This study shows that the use of a diet with an increased protein to energy ratio provides significant benefits in terms of reducing the impact of growth retardation at higher temperatures. [source] Effects of prebiotics on nutrient digestibility of a soybean-meal-based diet by red drum Sciaenops ocellatus (Linnaeus)AQUACULTURE RESEARCH, Issue 15 2008Gary Burr Abstract The present study examined the effects of four prebiotic compounds on nutrient and energy digestibility of soybean-meal-based diets by red drum (Sciaenops ocellatus). The experimental diets contained 40% crude protein of which approximately half was provided by soybean meal with the remainder from menhaden fish meal. The four prebiotics GroBiotic® -A (a mixture of partially autolysed brewers yeast, dairy ingredient components and dried fermentation products), mannanoligosaccharide (MOS), galacto-oligosaccharide (GOS) and inulin were individually added to the basal diet at 1% by weight. A diet with all its protein provided by menhaden fish meal was also included as a control. This control diet had the highest apparent digestibility coefficient (ADC) values , 87% for protein, 87% for lipid, 78% for organic matter and 83% for energy. The basal soybean-meal-based diet supplemented with GroBiotic® -A, GOS and MOS had significantly (P<0.05) increased protein (82%, 82%, 82% respectively) and organic matter ADC values (69%, 64%, 66% respectively), compared with the basal diet (69% for protein and 49% for organic matter). However, the lipid ADC values were significantly decreased for fish fed with the diets supplemented with inulin, GOS and MOS (63%, 61%, 61% respectively) compared with the basal diet (77%) but not for those fed GroBiotic® -A (82%). Energy ADC values were also increased in fish fed with the GroBiotic-A®, GOS and MOS diets (73%, 70%, 72%), compared with the basal diet (57%); however, fish fed with the inulin diet had an energy ADC value (54%) similar to that of fish fed with the basal diet. Thus, the present study is the first to demonstrate that nutrient and energy digestibility of soybean-meal-based diets by red drum can be enhanced with prebiotic supplementation. [source] |