Increased Genomic Instability (increased + genomic_instability)

Distribution by Scientific Domains


Selected Abstracts


Increased genomic instability and altered chromosomal protein phosphorylation timing in HRAS -transformed mouse fibroblasts

GENES, CHROMOSOMES AND CANCER, Issue 5 2009
Katherine L. Dunn
The RAS-mitogen-activated protein kinase signaling pathway is often deregulated in cancer cells. In metastatic HRAS -transformed mouse fibroblasts (Ciras-3), the RAS-MAPK pathway is constitutively activated. We show here that Ciras-3 cells exhibit a higher incidence of chromosomal instability than 10T1/2 cells, including higher levels of clonal and nonclonal chromosomal aberrations. Stimulation of serum starved 10T1/2 and Ciras-3 cells with phorbol esters (TPA) results in the phosphorylation of histone H3 at serine 10 and serine 28. Regardless of the increased genomic instability in Ciras-3 cells, TPA-induced H3 phosphorylated at serine 10 and H3 phosphorylated at serine 28 partitioned into distinct nuclear subdomains as they did in the parental cells. However, the timing of the response of the H3 phosphorylation event to TPA induction was delayed in Ciras-3 cells. Further Ciras-3 cells, which have a more open chromatin structure, had increased steady state levels of phosphorylated H3 and HMGN1 relative to parental 10T1/2 cells. TPA-induced H3 phosphorylated at serine 10 and 28 were colocalized with the transcriptionally initiated form of RNA polymerase II in 10T1/2 and Ciras-3 cells. Chromatin immunoprecipitation assays demonstrated that TPA-induced H3 phosphorylation at serine 28 was associated with the immediate early JUN promoter, providing direct evidence that this histone post-translational modification is associated with transcriptionally active genes. Together our results demonstrate the increased genomic instability and alterations in the epigenetic program in HRAS -transformed cells. © 2009 Wiley-Liss, Inc. [source]


Inter- alu PCR detects high frequency of genetic alterations in glioma cells exposed to sub-lethal cisplatin

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2005
Tapasya Srivastava
Abstract Increased genomic instability contributes to higher frequency of secondary drug resistance and neoplastic progression in tumors as well as in cells exposed to sub-lethal concentrations of chemotherapeutic agents. We have used PCR based DNA fingerprinting techniques of randomly amplified polymorphic DNA (RAPD) and inter- alu PCR to study this phenomenon in the tumor genome. The choice of the primer, either random (for RAPD) or specific (inter- alu PCR) can determine the nature of alterations being assessed. We have compared the inter- alu PCR and RAPD profiles of U87MG glioblastoma cells exposed to sequentially increasing low doses of cisplatin for 24 passages to that of untreated controls. Inter- alu PCR, with 2 primers, demonstrated a number of alterations in the treated cells, in the form of loss / gain and changes in the intensity of bands. No changes were observed by RAPD analysis with 5 primers, however, indicating a preferential increase in the alu mediated recombination frequency in the treated cells (p = 1.866 × 10,4). The number of changes observed with respect to the corresponding leucocyte DNA in the inter- alu PCR profile of 26 primary tumors (Grade II = 13; Grade IV = 13), resected before chemotherapy, for the 2 inter- alu primers was very small. We present a novel application of the inter- alu PCR in detecting alterations in long term cultured cells at low dose exposure to a chemotherapeutic agent. Our results suggest that alu mediated recombination may be important in cells exposed to sub-lethal doses of cisplatin but not in the genesis of primary glioma. © 2005 Wiley-Liss, Inc. [source]


Increased genomic instability and altered chromosomal protein phosphorylation timing in HRAS -transformed mouse fibroblasts

GENES, CHROMOSOMES AND CANCER, Issue 5 2009
Katherine L. Dunn
The RAS-mitogen-activated protein kinase signaling pathway is often deregulated in cancer cells. In metastatic HRAS -transformed mouse fibroblasts (Ciras-3), the RAS-MAPK pathway is constitutively activated. We show here that Ciras-3 cells exhibit a higher incidence of chromosomal instability than 10T1/2 cells, including higher levels of clonal and nonclonal chromosomal aberrations. Stimulation of serum starved 10T1/2 and Ciras-3 cells with phorbol esters (TPA) results in the phosphorylation of histone H3 at serine 10 and serine 28. Regardless of the increased genomic instability in Ciras-3 cells, TPA-induced H3 phosphorylated at serine 10 and H3 phosphorylated at serine 28 partitioned into distinct nuclear subdomains as they did in the parental cells. However, the timing of the response of the H3 phosphorylation event to TPA induction was delayed in Ciras-3 cells. Further Ciras-3 cells, which have a more open chromatin structure, had increased steady state levels of phosphorylated H3 and HMGN1 relative to parental 10T1/2 cells. TPA-induced H3 phosphorylated at serine 10 and 28 were colocalized with the transcriptionally initiated form of RNA polymerase II in 10T1/2 and Ciras-3 cells. Chromatin immunoprecipitation assays demonstrated that TPA-induced H3 phosphorylation at serine 28 was associated with the immediate early JUN promoter, providing direct evidence that this histone post-translational modification is associated with transcriptionally active genes. Together our results demonstrate the increased genomic instability and alterations in the epigenetic program in HRAS -transformed cells. © 2009 Wiley-Liss, Inc. [source]


Papillary and muscle invasive bladder tumors with distinct genomic stability profiles have different DNA repair fidelity and KU DNA-binding activities

GENES, CHROMOSOMES AND CANCER, Issue 4 2009
Johanne Bentley
Low-grade noninvasive papillary bladder tumors are genetically stable whereas muscle invasive bladder tumors display high levels of chromosomal aberrations. As cells deficient for nonhomologous end-joining (NHEJ) pathway components display increased genomic instability, we sought to determine the NHEJ repair characteristics of bladder tumors and correlate this with tumor stage and grade. A panel of 13 human bladder tumors of defined stage and grade were investigated for chromosomal aberrations by comparative genomic hybridization and for NHEJ repair fidelity and function. Repair assays were conducted with extracts made directly from bladder tumor specimens to avoid culture-induced phenotypic alterations and selection bias as only a minority of bladder tumors grow in culture. Four noninvasive bladder tumors (pTaG2), which were genetically stable, repaired a partially incompatible double-strand break (DSB) by NHEJ-dependent annealing of termini and fill-in of overhangs with minimal loss of nucleotides. In contrast, four muscle invasive bladder cancers (pT2-3G3), which displayed gross chromosomal rearrangements, repaired DSBs in an error-prone manner involving extensive resection and microhomology association. Four minimally invasive bladder cancers (pT1G3) had characteristics of both repair types. Error-prone repair in bladder tumors correlated with reduced KU DNA-binding and loss of TP53 function. In conclusion, there were distinct differences in DSB repair between noninvasive papillary tumors and higher stage/grade invasive cancers. End-joining fidelity correlated with stage and was increasingly error-prone as tumors became more invasive and KU binding activity reduced; these changes may underlie the different genomic profiles of these tumors. © 2008 Wiley-Liss, Inc. [source]