Increased Dispersion (increased + dispersion)

Distribution by Scientific Domains


Selected Abstracts


Proarrhythmia as a Class Effect of Quinolones: Increased Dispersion of Repolarization and Triangulation of Action Potential Predict Torsades de Pointes

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 6 2007
PETER MILBERG M.D.
Background: Numerous noncardiovascular drugs prolong repolarization and thereby increase the risk for patients to develop life-threatening tachyarrhythmias of the torsade de pointes (TdP) type. The development of TdP is an individual, patient-specific response to a repolarization-prolonging drug, depending on the repolarization reserve. The aim of the present study was to analyze the underlying mechanisms that discriminate hearts that will develop TdP from hearts that will not develop TdP. We therefore investigated the group of quinolone antibiotics that reduce repolarization reserve via IKr blockade in an intact heart model of proarrhythmia. Methods and Results: In 47 Langendorff-perfused, AV-blocked rabbit hearts, ciprofloxacin (n = 10), ofloxacin (n = 14), levofloxacin (n = 10), and moxifloxacin (n = 13) in concentrations from 100 ,M to 1,000 ,M were infused. Eight monophasic action potentials (MAPs) and an ECG were recorded simultaneously. After incremental pacing at cycle lengths from 900 ms to 300 ms to compare the action potential duration, potassium concentration was lowered to provoke TdP. All antibiotics led to a significant increase in QT interval and MAP duration, and exhibited reverse-use dependence. Eight simultaneously recorded MAPs demonstrated an increase in dispersion of repolarization in the presence of all antibiotics. MAP triangulation (ratio: MAP90/50) and fluctuation of consecutive action potentials were increased for all tested drugs at high concentrations. In the presence of low potassium concentration, all quinolones led to TdP: ciprofloxacin, 4 out of 10 (40%); ofloxacin, 3 out of 14 (21%); moxifloxacin, 9 out of 13 (69%); and levofloxacin, 2 out of 10 (20%). Hearts that developed TdP demonstrated a significant greater influence on dispersion of repolarization and on triangulation as compared with hearts without TdP. Conclusion: Quinolone antibiotics may be proarrhythmic due to a significant effect on myocardial repolarization. The individual response of a heart to develop TdP in this experimental model is characterized by a greater effect on dispersion of repolarization and on triangulation of action potential as compared with hearts that do not develop TdP. [source]


Circadian and Gender Effects on Repolarization in Healthy Adults: A Study Using Harmonic Regression Analysis

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 1 2010
Kenneth A. Mayuga M.D.
Background: Sudden cardiac death and myocardial infarction have a circadian variation with a peak incidence in the early morning hours. Increased dispersion of repolarization facilitates the development of conduction delay necessary to induce sustained arrhythmia. Both QT-dispersion and T-wave peak to T-wave end (TpTe) have been proposed as markers of dispersion of myocardial repolarization. Methods: Forty healthy adults (20 women), age 35,67 years old, with normal EKGs, echocardiograms, stress tests, and tilt-table tests were analyzed during a 27-hour hospital stay. EKGs were done at eight different time points. QT-intervals, QT-dispersion, and TpTe were measured at each time point. Harmonic regression was used to model circadian periodicity, P < 0.05 was considered significant. Results: The composite QT-interval was longer in women than in men (416 ± 17 msec vs 411 ± 20 msec, respectively, P = 0.006). The QT-dispersion among all leads was greater in men than women (37 ± 13 msec vs 30 ± 11 msec, respectively, P < 0.0001); a similar difference was found in the precordial leads. Harmonic regression showed that QT-dispersion had a significant circadian variation, primarily in men. In men, the maximum QT-dispersion occurred at 6 AM (45 ± 15 msec). TpTe also had a significant circadian variation that was not affected by gender in the majority of leads. Conclusions: A circadian variation exists in the dispersion of myocardial repolarization, as measured by both TpTe and QT-dispersion. Men and women have a different circadian variation pattern. Further studies regarding the mechanisms and clinical implications are needed. Ann Noninvasive Electrocardiol 2010;15(1):3,10 [source]


In-situ gamma-ray spectrometric study of weathered volcanic rocks in Hong Kong

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2002
Margie Q. F. Chen
Abstract In-situ gamma-ray spectrometry (GRS) measurements were conducted at 35 sites in Hong Kong where volcanic rocks with varying extent of weathering were exposed. Elemental analyses using X-ray fluorescence spectrometry and inductively coupled plasma,mass spectrometry were carried out on samples collected from these 35 plus 22 other locations to assess the feasibility of using the GRS method to quantify the extent of weathering. The Parker weathering index, varying within a range of 0·0,0·8 for the samples studied, was used as a geochemically based reference scheme for correlating the gamma-ray spectrometric results with the extent of weathering. For the former 35 sites, the concentrations of the three major radioelements, K, U and Th, determined by in-situ GRS were compared to laboratory-determined values from the samples. The study reveals that no significant change occurs to the contents of the three radioelements during the initial state of weathering. But once the rocks become highly weathered, further progression of weathering is accompanied by a systematic removal of K and an increased dispersion of U and Th. The results show that K content, which is indicative of the extent of weathering, can be retrieved reliably with the gamma-ray spectrometry technique. The study has given support to the potential use of the downhole spectral gamma method for evaluation of weathering grade and the detection of subsurface clay-rich levels. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Lime and cow slurry application temporarily increases organic phosphorus mobility in an acid soil

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2007
P. N. C. MurphyArticle first published online: 13 OCT 200
Summary Phosphorus loss from agricultural soils to water is recognized as a major contributor to eutrophication of surface water bodies. There is much evidence to suggest that liming, a common agricultural practice, may decrease the risk of P loss by decreasing P solubility. An unsaturated leaching column experiment, with treatments of control and two lime rates, was carried out to investigate the effects of liming on P mobility in a low-P acid Irish soil, which was sieved and then packed in columns. Phosphorus was applied at the soil surface in the form of KH2PO4 in solution or as cow slurry. Soil solution was sampled at time intervals over depth and analysed for P fractions. Organic P (OP) was the dominant form of P mobile in soil solution. Liming increased OP mobility, probably through increased dispersion of OP with increased pH. Slurry application also increased OP mobility. Results indicated the potential for OP loss following heavy (100 m,3 ha,1) cow slurry application, even from low-P soils, and suggested that liming may increase this risk. Reactive P (RP) was sorbed strongly and rapidly by the soil and did not move substantially below 5 cm depth. As a result, Olsen-P values in the top 2 cm were greatly increased, which indicates an increased risk of RP loss in overland flow. Lime showed little potential as a soil amendment to reduce the risk of P loss. [source]


Characterization of the Electroanatomical Substrate in Human Atrial Fibrillation: The Relationship between Changes in Atrial Volume, Refractoriness, Wavefront Propagation Velocities, and AF Burden

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2007
PIPIN KOJODJOJO M.R.C.P.
Introduction: Progressive remodeling occurs in experimental models of AF whereby slowing of conduction, shortening of refractoriness, and atrial dilatation are associated with an increased vulnerability to atrial fibrillation (AF). This study investigates the relative changes in atrial geometry and electrophysiology with increasing AF burden in humans. Methods and Results: Patients undergoing ablation of AF or left-sided accessory pathways were recruited. Atrial volumes were determined by echocardiography. Wavefront propagation velocities (WPV), specifically in the direction of activation, were calculated from pre-ablation activation (CartoÔ) maps of both atria. Dispersion, adaptation of, and effective refractoriness (ERP) were measured at 3 sites. A composite arrhythmogenic index (Atrial Volume/WPV × ERP) was derived to compare the degree of electroanatomical remodeling with AF burden. Fifty-nine patients (22 paroxysmal AF, 19 recurrent persistent AF, and 18 controls) were recruited. AF subjects had slower right atrial WPV (P = 0.01), but no difference in left atrial WPV compared with controls. ERP was reduced globally (P < 0.05), with increased dispersion (P < 0.05). WPV and ERP did not distinguish between patients with paroxysmal or persistent AF. Biatrial volumes were greater only in patients with persistent AF (P < 0.01). There was a stepwise increase in the AI with increasing AF burden (P < 0.0001). Conclusion: An arrhythmogenic substrate exists in human AF, characterized by globally decreased refractoriness with greater dispersion, slower right atrial conduction, and atrial dilatation. Persistence of AF is not accompanied by any further electrical remodeling, but only atrial dilatation. The degree of electroanatomical remodeling is associated with the clinical pattern of AF. [source]


Effect of Action Potential Duration and Conduction Velocity Restitution and Their Spatial Dispersion on Alternans and the Stability of Arrhythmias

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2002
ISABELLE BANVILLE Ph.D.
Restitution and Spatial Heterogeneities vs Arrhythmias.Introduction: The slope of the action potential duration (APD) restitution curve has been used to explain wavebreaks during arrhythmia initiation and maintenance. This hypothesis remains incomplete to fully describe the experimental data. Other factors contributing to wavebreaks must be studied to further understand arrhythmia dynamics. Methods and Results: Control APDs were measured from isolated rabbit hearts using a monophasic action potential probe. APD and conduction velocity (CV) restitution were quantified over the heart surface for two drugs, diacetyl monoxime (DAM) and cytochalasin D (CytoD), using a dual camera video imaging system. For all pacing intervals: (1) control APDs were shorter than for CytoD but longer than for DAM; and (2) CV was greater for CytoD compared with DAM. APD dispersion increased as pacing interval decreased for both drugs. For DAM, increased dispersion was due to a difference in APD restitution between the right and left ventricle. For CytoD, increased dispersion was due to discordant alternans, with no significant spatial variation in restitution. Fibrillation was sustained only in the control hearts; with DAM, stable reentry was sustained with shorter APD and cycle length compared with CytoD for which only nonsustained unstable reentry occurred. Conclusion: Alternans and arrhythmia dynamics are affected by the spatial dispersion of APD restitution as well as CV restitution, not simply the slope of APD restitution. Therefore, a direct link of the APD restitution slope to alternans and arrhythmia dynamics in rabbit heart does not exist. Designing antiarrhythmic drugs to alter only the restitution slope may not be appropriate. [source]


Mechanisms of Preventive Effect of Nicorandil on Ischaemia-Induced Ventricular Tachyarrhythmia in Isolated Arterially Perfused Canine Left Ventricular Wedges

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2008
Masamichi Hirose
We examined effects of nicorandil on the induction of VT during acute myocardial ischaemia. Optical action potentials were recorded from the entire transmural wall of arterially perfused canine left ventricular wedges. Ischaemia was produced by arterial occlusion for 20 min. During endocardial pacing, nicorandil shortened mean action potential duration (APD) in the transmural wall before ischaemia and further shortened it during ischaemia without increasing dispersion of APD. HMR1098, a selective blocker of sarcolemmal ATP-sensitive K+ channels, inhibited the shortening of APD by nicorandil before and during ischaemia. Ischaemia decreased transmural conduction velocity (CV). Nicorandil partially restored CV to a similar extent in the absence and presence of HMR1098. In contrast, HMR1098 did not suppress the ischaemic conduction slowing in the absence of nicorandil. Nicorandil suppressed the increased dispersion of local CV during ischaemia. Isochrone maps on the initiation of VT showed that reentry in the transmural surface resulted from the excitation of the epicardial region of transmural surface. Nicorandil significantly increased the size of non-excited area in the epicardial region of the transmural wall, thereby significantly reducing the incidence of VT induced during ischaemia. HMR1098 inhibited this effect of nicorandil. These results suggest that nicorandil prevents VT during acute global ischaemia primarily by augmenting the inactivation of epicardial muscle through the activation of sarcolemmal KATP channels. [source]