Input Force (input + force)

Distribution by Scientific Domains


Selected Abstracts


Investigation of the sliding behavior between steel and mortar for seismic applications in structures

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2009
Jason McCormick
Abstract The friction developed between a steel base plate and a mortar base contributes shear resistance to the building system during a seismic event. In order to investigate the possible sliding behavior between the base plate and the mortar, a shake table study is undertaken using a large rigid mass supported by steel contact elements which rest on mortar surfaces connected to the shake table. Horizontal input accelerations are considered at various magnitudes and frequencies. The results provide a constant friction coefficient during sliding with an average value of approximately 0.78. A theoretical formulation of the friction behavior is also undertaken. The theoretical equations show that the sliding behavior is dependent on the ratio of the friction force to the input force. The addition of vertical accelerations to the system further complicates the sliding behavior as a result of the varying normal force. This results in a variable friction resistance which is a function of the amplitude, phase, and frequency of the horizontal and vertical input motions. In general, this study showed a consistent and reliable sliding behavior between steel and mortar. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Output-only structural identification in time domain: Numerical and experimental studies

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2008
M. J. Perry
Abstract By identifying changes in stiffness parameters, structural damage can be detected and monitored. Although considerable progress has been made in this research area, many challenges remain in achieving robust structural identification based on incomplete and noisy measurement signals. The identification task is made even more difficult if measurement of input force is to be eliminated. To this end, an output-only structural identification strategy is proposed to identify unknown stiffness and damping parameters. A non-classical approach based on genetic algorithms (GAs) is adopted. The proposed strategy makes use of the recently developed GA-based method of search space reduction, which has shown to be able to accurately and reliably identify structural parameters from measured input and output signals. By modifying the numerical integration scheme, input can be computed as the parameter identification task is in progress, thereby eliminating the need to measure forces. Numerical and experimental results demonstrate the power of the strategy in accurate and efficient identification of structural parameters and damage using only incomplete acceleration measurements. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Jaw Mechanics in Basal Ceratopsia (Ornithischia, Dinosauria)

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 9 2009
Kyo Tanoue
Abstract Ceratopsian dinosaurs were a dominant group of herbivores in Cretaceous terrestrial ecosystems. We hypothesize that an understanding of the feeding system will provide important insight into the evolutionary success of these animals. The mandibular mechanics of eight genera of basal ceratopsians was examined to understand the variability in shape of the jaws and the early evolution of the masticatory system in Ceratopsia. Data were collected on lever arms, cranial angles and tooth row lengths. The results indicate that psittacosaurids had higher leverage at the beak and in the rostral part of the tooth row than basal neoceratopsians, but lower leverage in the caudal part of the tooth row. Although the vertebrate mandible is generally considered as a third-class lever, that of basal neoceratopsians acted as a second-class lever at the caudal part of the tooth row, as is also true in ceratopsids. When total input force from the mandibular adductor muscles on both sides of the skull is considered, the largest bite force in basal ceratopsian tooth rows was exerted in the caudal part of the tooth row at the caudal extremity of the zone with near-maximum input force. Medially positioned teeth generate higher leverage than laterally positioned teeth. The largest bite force in all basal ceratopsians is smaller than the maximum input force, a limit imposed by the morphology of the basal ceratopsian masticatory system. In ceratopsids, caudal extension of the tooth row resulted in a much larger bite force, even exceeding the maximum input force. Anat Rec, 292:1352,1369, 2009. © 2009 Wiley-Liss, Inc. [source]


Force Transmissibility Performance of Parallel Manipulators

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 11 2003
Wen-Tung Chang
In this paper, a new force transmission index called the mean force transmission index (MFTI) is proposed, and the force transmissibility analysis procedure is established for parallel manipulators. The MFTI is an extended definition of the force transmission index (FTI) introduced by the authors previously. It is shown that the FTI is a function of the input velocity ratio (IVR) for a multi-DOF mechanism of the same configuration. To represent the force transmissibility by a definite value, the MFTI is defined as the mean value of the normalized FTIs function over the whole range of the IVR. The force transmissibility analysis of two planar parallel manipulators is illustrated using the MFTI method. The result is compared with that of the Jacobian matrix method and the joint force index (JFI) method. It shows that, especially for symmetric parallel manipulators, an approximate inverse-proportionality relationship exists between the JFI and MFTI, and between the maximum input torque/force and MFTI. It is concluded that the MFTI can be used as a quantitative measure of the force transmissibility performance for parallel manipulators. In the end, a design optimization problem is studied by taking the global force transmission index as the objective function. © 2003 Wiley Periodicals, Inc. [source]