Inorganic Hybrid Materials (inorganic + hybrid_material)

Distribution by Scientific Domains


Selected Abstracts


Synthesis and Physicochemical Characterization of meso -Functionalized Corroles: Precursors of Organic,Inorganic Hybrid Materials

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 21 2005
Jean-Michel Barbe
Abstract Cobalt(III) corroles exhibit an infinite selectivity for the coordination of carbon monoxide towards dioxygen and dinitrogen. This peculiar property thus allows their use as sensing devices for CO detection. Here are described the syntheses and physico-chemical characterization of meso mono-, bis- and tris(triethoxysilyl)-functionalized corroles, precursors of organic,inorganic materials. The corrole ring formation was achieved in every case using the "2+1" method involving the reaction of two equivalents of an encumbered dipyrromethane with one equivalent of an aromatic aldehyde in the presence of a catalytic amount of trifluoroacetic acid. The functionalization of the corrole by triethoxysilyl chains was carried out by a condensation reaction of an isocyanate, bearing a triethoxysilyl termination, either on an amino or hydroxy group. Each final compound and intermediate were characterized by various physico-chemical techniques such as 1H NMR, UV/Vis, MALDI/TOF or EI mass spectrometry and elemental analysis. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Rewritable Holographic Structures Formed in Organic,Inorganic Hybrid Materials by Photothermal Processing

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2009
Hiroshi Kakiuchida
Abstract Holographic and direct-written structures are fabricated in tin-doped silicophosphite thin plates containing rhodamine 6G dye by a photothermal process based on the principle of glass softening/frozen-in behavior. To be highly processable by photothermal treatment and stable at room temperature after processing, the intrinsic viscoelastic property is improved by increasing the crosslinking density of the network structure, and the photothermal conditions for efficient transfer of the irradiated photons to thermal phonons are explored. Then, the excellent rewritability and reliability of the fine processed structure are found by examining the writing/erasing repetition. Furthermore, the origins of the changes in refractive index due to photothermal treatment are classified into density change and photobleaching, and the dynamics of the formation process of holographic gratings are studied by measuring refractive index changes as functions of irradiation time and wavelength. As a result, it is found that the holographic structure consists of spatial modulation of the refractive index and the refractive index change results primarily from the change in the frozen structure, although there is a slight influence by photobleaching. [source]


ChemInform Abstract: Organic,Inorganic Hybrid Materials for Enantioselective Organocatalysis.

CHEMINFORM, Issue 51 2009
Vivek Srivastava
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


A Highly Efficient Three-Component Coupling of Aldehyde, Terminal Alkyne, and Amine via C,H Activation Catalyzed by Reusable Immobilized Copper in Organic,Inorganic Hybrid Materials under Solvent-Free Reaction Conditions.

CHEMINFORM, Issue 40 2007
Pinhua Li
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


Silica-Based, Organically Modified Host Material for Waveguide Structuring by Two-Photon-Induced Photopolymerization

ADVANCED FUNCTIONAL MATERIALS, Issue 5 2010
Stefan Krivec
Abstract The three-dimensional fabrication of optical waveguides has gained increasing interest in recent years to establish interconnections between electrical components on a very small scale where copper circuits encounter severe limitations. In this work the application of optically clear, organically modified porous silica monoliths and thin films as a host material for polymeric waveguides to be inscribed into the solid host structure by two-photon-induced photopolymerization is investigated. Porosity is generated using a lyotropic liquid crystalline surfactant/solvent system as a template for the solid silica material obtained by a sol,gel transition of a liquid precursor. In order to reduce the brittleness of the purely inorganic material, organic,inorganic co-precursor molecules that contain poly(ethylene glycol) chains are synthesized and added to the mixture, which successfully suppresses macroscopic cracking and leads to flexible thin films. The structure of the thus-obtained porous organic,inorganic hybrid material is investigated by atomic force microscopy. It is shown that the modified material is suitable for infiltration with photocurable monomers and functional polymeric waveguides can be inscribed by selective two-photon-induced photopolymerization. [source]


Functional Chromium Wheel-Based Hybrid Organic,Inorganic Materials for Dielectric Applications

ADVANCED FUNCTIONAL MATERIALS, Issue 20 2009
Vito Di Noto
Abstract The first example of organic,inorganic hybrid materials based on the embedding of a chromium,nickel wheel cluster {[(n-C3H7)2NH2]- [Cr7NiF8(O2C4H5)16]} (Cr7Ni) into poly(methyl methacrylate) (PMMA) and the characterization of the dielectric properties of the obtained material is described. By an optimized copolymerization of the methacrylate-functionalized chromium,nickel wheel with methyl methacrylate in a cluster/monomer 1:200 molar mixture, a homogeneous hybrid material CrNi_MMA200 is obtained. The electrical responses of the non-doped PMMA and of the hybrid material were studied by broadband dielectric spectroscopy (BDS) from 0.01,Hz to 10,MHz and over the temperature range of 5,115,°C. The permittivity profiles reveal two relaxation peaks in the materials, which correspond to the , and , relaxation modes of the PMMA matrix. The position of these modes shifts toward higher frequencies as temperature increases. BDS is a powerful tool revealing the intimate miscibility of the various components of the hybrid material, thus indicating that, on a molecular scale, the material proposed is a homogeneous system. Finally, a value of the dielectric constant of 2.9 at 25,°C and 1,kHz is determined. This value is noticeably lower than the value of 3.2 obtained for pristine PMMA prepared following the same synthesis protocol. Thus, these results classify the hybrid CrNi_MMA200 as an appealing starting material for the development of dielectric polymeric layers for the development of innovative capacitors, transistors, and other microelectronic devices. The vibrational properties of the hybrid materials are investigated by Fourier-transform infrared (FT-IR) and Raman spectroscopy, whereas the thermal behavior is analyzed by thermogravimetric analysis (TGA). Swelling experiments are used to qualitatively evaluate the crosslinking density of the hybrid materials. The integrity of the wheels once embedded in the macromolecular backbone is confirmed by extended X-ray absorption fine structure (EXAFS) and electron spin resonance (EPR) spectroscopic measurements. [source]


Preparation of Protamine,Titania Microcapsules Through Synergy Between Layer-by-Layer Assembly and Biomimetic Mineralization

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2009
Yanjun Jiang
Abstract A novel approach combining layer-by-layer (LbL) assembly with biomimetic mineralization is proposed to prepare protamine,titiania hybrid microcapsules. More specifically, these microcapsules are fabricated by alternative deposition of positively charged protamine layers and negatively charged titania layers on the surface of CaCO3 microparticles, followed by dissolution of the CaCO3 microparticles using EDTA. During the deposition process, the protamine layer induces the hydrolysis and condensation of a titania precursor, to form the titania layer. Thereafter, the negatively charged titania layer allows a new cycle of deposition step of the protamine layer, which ensures a continuous LbL process. The morphology, structure, and chemical composition of the microcapsules are characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. Moreover, these protamine,titania hybrid microcapsules are first employed as the carrier for the immobilization of yeast alcohol dehydrogenase (YADH), and the encapsulated YADH displays enhanced recycling stability. This approach may open a facile, general, and efficient way to prepare organic,inorganic hybrid materials with different compositions and shapes. [source]


Organic,inorganic hybrid materials derived from epoxy resin and polysiloxanes: Synthesis and characterization

POLYMER ENGINEERING & SCIENCE, Issue 1 2008
C.F. Canto
In this study, hybrid materials based on epoxy resin were prepared as transparent self-supported films by a sol,gel process. 4,4,-Diaminodiphenylmethane or oligomeric epoxy resin were used as precursors, which were conveniently functionalized with trialkoxysilanes as end-groups. The effect of the introduction of poly (dimethylsiloxane) was also investigated. The hybrid films showed good thermal stability, a nondefined glass transition temperature, and a dense morphology without phase segregation. The tendency to a flat surface could be observed by atomic force microscopy. The hybrid films also showed good performance as coatings for glass plates, with an improved hydrophobic character in comparison to neat epoxy resin. POLYM. ENG. SCI., 48:141,148, 2008. © 2007 Society of Plastics Engineers [source]


Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2009
Tierui Zhang
Abstract A variety of functional nanostructured organic/inorganic hybrid materials from the europium-exchanged derivative of a Preyssler-type polyoxometalate (POM), [EuP5W30O110]12,, and functional organic surfactants were prepared by the ionic self-assembly (ISA) route. The effect of organic surfactants on the structure, photoluminescent, electrochemical and electrochromic properties of the POM anions was investigated in detail. All obtained hybrid materials are amphotropic, i.e., exhibit both thermotropic and lyotropic liquid-crystalline phase behaviour. Investigations of their photophysical properties have shown that the interactions of the various surfactants with the polyanions influence the coordination environments and site symmetry of Eu3+ in different ways. The functional groups in the organic surfactants significantly influence the electrochromic properties and photoluminescence of POMs. Different from normal and pyridine-containing complexes, no photoluminescence and no electrochromism were observed from the ferrocene-containing complexes. This may be explained in view of charge transfer between the POM anion and the ferrocenyl group. [source]


Synthesis and properties of organic/inorganic hybrid nanoparticles prepared using atom transfer radical polymerization

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008
Tzong-Liu Wang
Abstract The synthesis of organic/inorganic hybrid materials was conducted by atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate (MMA) from the surface of silica colloids. Colloidal initiators were prepared by the functionalization of silica nanoparticles with (3-(2-bromoisobutyryl)propyl) dimethylethoxysilane (BIDS). Well-defined polymer chains were grown from the nanoparticle surfaces to yield individual particles composed of a silica core and a well-defined outer polystyrene (PS) or poly(methyl methacrylate) (PMMA) layer. Fourier transform infrared (FTIR) and solid state 13C and 29Si-NMR spectroscopy confirmed the successful modification of nanosilica surfaces. Subsequent grafting of polymers on silica surfaces by ATRP was also performed with success based on FTIR and NMR data. Scanning electron microscopy (SEM) and silicon mapping showed both hybrid materials were homogeneous dispersion systems. Energy dispersive X-ray spectrometer (EDS) analysis indicated that the BIDS initiator was covalently attached on surfaces of silica nanoparticles and ATRP of styrene and MMA were accomplished. Thermogravimetric analysis (TGA) results displayed higher thermal stabilities for both nanohybrids in comparison with the linear-type vinyl polymers. Contact angle measurements revealed the nanomaterials character for both silica-based hybrid materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Thermo-Responsive Organic/Inorganic Hybrid Hydrogels based on Poly(N -vinylcaprolactam)

MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 1 2003
Wouter Loos
Abstract A new type of ,intelligent' hydrogels has been developed in the form of organic/inorganic hybrid materials by making use of the sol-gel technology. Poly(N -vinylcaprolactam) (PVCL) has been incorporated in these materials for its thermo-responsive properties. The synthesis of the hybrid hydrogels was achieved by the in situ formation of an inorganic silica phase in the presence of an aqueous solution of high molecular weight PVCL. This methodology results in the preparation of micro-heterogeneous systems in which silica particles of nanometer dimensions act as physical cross-links for the PVCL molecules. Hydrogen bonds between the remaining non-condensed silanol groups and the PVCL carbonyl functions, together with physical entanglements, are responsible for the strong interactions between the organic and inorganic phases. Stress-strain tests on highly swollen materials demonstrated that the unique structure of these thermo-responsive hybrid hydrogels improves the mechanical stability to a great extent as compared to conventional hydrogels. Transmission measurements demonstrate that the presence of the inorganic phase does not influence the cloud point temperatures of PVCL significantly. On the other hand, the response of the reinforced hybrid hydrogels to temperature becomes less pronounced for increasing silica fractions. The reversibility of the swelling/deswelling process has been demonstrated by swelling experiments as a function of temperature. PVCL/SiO2 hybrid hydrogels. [source]