Innovative Applications (innovative + application)

Distribution by Scientific Domains


Selected Abstracts


Nanoscale Grain Refinement and H-Sorption Properties of MgH2 Processed by High-Pressure Torsion and Other Mechanical Routes,

ADVANCED ENGINEERING MATERIALS, Issue 8 2010
Daniel Rodrigo Leiva
MgH2 is a promising material for solid-state hydrogen storage due to its high gravimetric and volumetric storage capacity and its relatively low cost. Severe plastic deformation (SPD) processing techniques are being explored as an alternative to high-energy ball-milling (HEBM) in order to obtain more air resistant materials and reduce processing times. In this work, Mg, MgH2, and MgH2,Fe mixtures were severely mechanically processed by different techniques such as high-pressure torsion (HPT), extensive cold forging, and cold rolling. A very significant grain refinement was achieved when using MgH2 instead of Mg as raw material. The mean crystallite sizes observed ranged from 10 to 30,nm, depending on the processing conditions. Enhanced H-sorption properties were observed for the MgH2 -based nanocomposites processed by HPT when compared with MgH2 mixtures. Additionally, cold forging and cold rolling also proved effective in nanostructuring MgH2. These results suggest a high potential for innovative application with the use of low cost mechanical processing routes to produce Mg-based nanomaterials with attractive hydrogen storage properties. [source]


Occupational Sex Segregation and Part-time Work in Modern Britain

GENDER, WORK & ORGANISATION, Issue 2 2001
Louisa Blackwell
It is often argued that women's full-time work is becoming less gender segregated, while their part-time work becomes more so. This article looks cross-sectionally and longitudinally at the relationship between occupational sex segregation and part-time work. An innovative application of segregation curves and the Gini index measures segregation between women full-timers and men and between women part-timers and men. Both fell between 1971 and 1991, as did overall occupational sex segregation. These results were used to contextualize a longitudinal analysis showing how shifts between full-time and part-time hours affected women's experiences of occupational sex segregation and vertical mobility. Human capital explanations see full-time and part-time workers as distinct groups whose occupational choices reflect anticipated family roles. The plausibility of this emphasis on long-term strategic planning is challenged by substantial and characteristic patterns of occupational mobility when women switch between full-time and part-time hours. The segmented nature of part-time work meant that women who switched to part-time hours, usually over child rearing, were often thrown off their occupational path into low-skilled, feminized work. There was some ,occupational recovery' when they resumed full-time work. [source]


2-D transmitral flows simulation by means of the immersed boundary method on unstructured grids

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2002
F. M. Denaro
Abstract Interaction between computational fluid dynamics and clinical researches recently allowed a deeper understanding of the physiology of complex phenomena involving cardio-vascular mechanisms. The aim of this paper is to develop a simplified numerical model based on the Immersed Boundary Method and to perform numerical simulations in order to study the cardiac diastolic phase during which the left ventricle is filled with blood flowing from the atrium throughout the mitral valve. As one of the diagnostic problems to be faced by clinicians is the lack of a univocal definition of the diastolic performance from the velocity measurements obtained by Eco,Doppler techniques, numerical simulations are supposed to provide an insight both into the physics of the diastole and into the interpretation of experimental data. An innovative application of the Immersed Boundary Method on unstructured grids is presented, fulfilling accuracy requirements related to the development of a thin boundary layer along the moving immersed boundary. It appears that this coupling between unstructured meshes and the Immersed Boundary Method is a promising technique when a wide range of spatial scales is involved together with a moving boundary. Numerical simulations are performed in a range of physiological parameters and a qualitative comparison with experimental data is presented, in order to demonstrate that, despite the simplified model, the main physiological characteristics of the diastole are well represented. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Laserstrahlschweißen von Titanwerkstoffen unter Berücksichtigung des Einflusses des Sauerstoffes

MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 9 2004
J. P. Bergmann
titanium; colorations; laser welding; shielding device Abstract Im Rahmen dieses Aufsatzes wird erstmalig ein innovatives Konzept zum Laserstrahlschweißen von Titan für die Serienfertigung dargestellt und validiert. Durch den neuartigen Einsatz eines 6-lagigen Metallgewebes ist es möglich, die Strömung vom Schutzgas so stark zu beruhigen, dass die beim Schweißen schädlichen Verwirbelungen vermieden werden können. Der Einbau eines derartigen Gewebes als Boden einer offenen Schweißkammer ermöglicht sowohl das mechanisierte als auch das vollautomatisierte Schweißen von hochreaktiven Werkstoffen, wie zum Beispiel Titanwerkstoffen, unter atmosphärischen Druckbedingungen und unter inerter Abdeckung. Damit wird der für eine industrielle Fertigung, insbesondere für Industrieroboter, notwendige Freiheits- und Zugänglichkeitsgrad zur Fügestelle im Vergleich zu konventionellen geschlossenen WIG-Schweißhauben gewährleistet. Von weitgehender Bedeutung für die Schweißtechnik von Titanwerkstoffen ist es, dass auch die Bereiche, die in der Praxis mittels einer Nachschleppdüse vom Schutzgas nicht erreichbar wären, wie z.,B. die Überlappgebiete bei der Überlappnaht, erfolgreich durch das Prinzip der wirbelfreien Schweißkammer geschützt werden können. Mit Hilfe dieser neuartigen Vorgehensweise und eines modernen Fügeverfahrens, wie dem Nd:YAG-Laserschweißen, konnten erstmalig systematische Grundlagenuntersuchungen zum Einfluss von Sauerstoff in der Schweißumgebung auf die Mikrostruktur und auf die mechanisch-technologischen Eigenschaften einer Modellschweißverbindung durchgeführt werden. Durch die Validierung des gesamten Systems konnte bewiesen werden, dass im Vergleich zum konventionellen WIG-Verfahren geringere Anforderungen an die Reinheit des Schutzgases, um Anlauffarben und unzulässige Aufhärtungen zu vermeiden, gerichtet werden können. Für das Laserstrahlschweißen kann ein maximaler Restsauerstoffgehalt von 1000 ppm in der Schweißumgebung unbedenklich toleriert werden. Für das WIG-Schweißen gilt dagegen ein Höchstwert von etwa 30 ppm. Ferner konnte nachgewiesen werden, dass die Qualitätsmerkmale der derzeitigen Regelwerke für das WIG-Schweißen für die Luft- und Raumfahrttechnik auf das Verfahren Laserstrahlschweißen mit Nd:YAG-Quellen übertragen werden können. Influence of the oxygen content in the shielding gas on microstructure and mechanical properties of laser welds of titanium and titanium alloys In the present work, a new tool concept for laser welding of titanium in high volume production has been presented and evaluated. Through the innovative application of a six-layer metal web it is possible to calm the argon gas flow and avoid pernicious turbulences during welding. The integration of the mentioned metal web at the base of an open welding chamber allows the automated welding of highly reactive materials, such as titanium, under atmospheric pressure and inert shielding conditions. The higher density of argon relative to air offers the unique possibility to leave the chamber open on the top, so that a higher degree of flexibility than gas shielding devices for TIG welding, especially for industrial robots, is attained and can be successfully used for industrial mass production. Furthermore this device is important for welding three-dimensional contours or to shield the regions of overlap (in overlapped joints) where shielding gas trailers are unsuccessful. By means of the presented gas shielding procedure and a modern laser welding process such as Nd:YAG laser welding, systematic investigations on the effect of oxygen on the microstructure as well as on the mechanical properties of reference bead-on-plate weldments could be performed for the first time. As a result of these welding trials it can be concluded that in order to avoid discolorations and hardness increase, lower restrictions to the purity of the shielding gas, in comparison to TIG welding condition, can be allowed. The maximum tolerable value of oxygen in the welding atmosphere was found to be approximately 1000 ppm for laser welding. On the contrary the maximum value for TIG welding is about 30 ppm. Further investigations on the microstructural and mechanical properties of the joints confirm that the optical quality assurance criteria for TIG welding due to the standards of aircraft construction transferable to Nd:YAG welding are. [source]


Real-time detection of the morphological change in cellulose by a nanomechanical sensor

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2010
Liming Zhao
Abstract Up to now, experimental limitations have prevented researchers from achieving the molecular-level understanding for the initial steps of the enzymatic hydrolysis of cellulose, where cellulase breaks down the crystal structure on the surface region of cellulose and exposes cellulose chains for the subsequent hydrolysis by cellulase. Because one of these non-hydrolytic enzymatic steps could be the rate-limiting step for the entire enzymatic hydrolysis of crystalline cellulose by cellulase, being able to analyze and understand these steps is instrumental in uncovering novel leads for improving the efficiency of cellulase. In this communication, we report an innovative application of the microcantilever technique for a real-time assessment of the morphological change of cellulose induced by a treatment of sodium chloride. This sensitive nanomechanical approach to define changes in surface structure of cellulose has the potential to permit a real-time assessment of the effect of the non-hydrolytic activities of cellulase on cellulose and thereby to provide a comprehensive understanding of the initial steps of the enzymatic hydrolysis of cellulose. Biotechnol. Bioeng. 2010;107: 190,194. © 2010 Wiley Periodicals, Inc. [source]


Lightweight Porcelain Stoneware by Engineered CeO2 Addition,

ADVANCED ENGINEERING MATERIALS, Issue 1-2 2010
Enrico Bernardo
The use of porcelain stoneware in innovative applications such as the covering of internal walls or the manufacturing of ventilated facades may be limited by its relatively high density. In this paper, we discuss the achievement of a reduction in density of about 30%, coupled to a limited water absorption (about 2%), by the addition of CeO2 to the raw materials. This additive provides some porosity due to the evolution of oxygen, in turn caused by the high temperature reduction to Ce2O3. This gas formation depends both on sintering temperature, holding time, and is obviously affected by the concentration of additive. Two different processing strategies were found to match the density and water absorption requirements for the application of stoneware tiles. One involved the the control of the CeO2 content together with processing at high temperature for a limited holding time; the other one corresponded to the fabrication of a graded material, comprising a highly porous core (produced using a high content of CeO2) sandwiched between two external compact surface layers. [source]


Synthetic Strategies for Hybrid Materials to Improve Properties for Optoelectronic Applications,

ADVANCED FUNCTIONAL MATERIALS, Issue 14 2008
Olga García
Abstract We report, for the first time to the best of our knowledge, a systematic study to relate the laser action from BODIPY dyes, doped into monolithic hybrid matrices, with the synthetic protocols of the final materials prepared via sol-gel. To this aim, the influence of both the hydrolysis time, increased in a controlled way, and the nature of the neutralization agent (pyridine, 3-amino-propyltriethoxy-silane (APS), N -[3-(trimethoxysilyl)propyl]-ethylene diamine (TSPDA), and N1 -[3-(trimethoxysilyl)propyl]- diethylene triamine (TSPTA) on the laser action of PM567, incorporated into hybrid matrices based on copolymers of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA), with methyltriethoxysilane (TRIEOS) as inorganic precursor, was analyzed. The presence of the amine-modified silane TSPDA as neutralization agent, which is able at the same time to be anchored to the inorganic network enhancing the inorganic-organic compatibility through the matrix interphase, and utilization of hydrolysis times lower than 10 minutes, increased significantly the lasing efficiency and photostability of dye. The extension of this study to the laser behavior of BODIPY dyes embedded in other different hybrid materials based on hydrolyzed-condensed copolymers of MMA with 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) in a 1/1 volumetric proportion, validates the generalization of the above conclusions, which provide guides for the optimization of the synthesis of organic-inorganic hybrid materials with optoelectronic innovative applications independently of their composition. [source]


Economics-inspired decentralized control approach for adaptive grid services and applications

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, Issue 12 2006
Lei Gao
Grid technologies facilitate innovative applications among dynamic virtual organizations, while the ability to deploy, manage, and properly remain functioning via traditional approaches has been exceeded by the complexity of the next generation of grid systems. An important method for addressing this challenge may require nature-inspired computing paradigms. This technique will entail construction of a bottom-up multiagent system; however, the appropriate implementation mechanism is under consideration in order for the autonomous and distributed agents to emerge as a controlled grid service or application. A credit card management service in economic interactions is considered in this article for a decentralized control approach. This consideration is based on a preliminarily developed ecological network-based grid middleware that has features desired for the next generation grid systems. The control scheme, design, and implementation of the credit card management service are presented in detail. The simulation results show that (1) agents are accountable for their activities such as behavior invocation, service provision, and resource utilization and (2) generated services or applications adapt well to dynamically changing environments such as agent amounts as well as partial failure of agents. The approach presented herein is beneficial for building autonomous and adaptive grid applications and services. © 2006 Wiley Periodicals, Inc. Int J Int Syst 21: 1269,1288, 2006. [source]


Digital photography: A primer for pathologists

JOURNAL OF CLINICAL LABORATORY ANALYSIS, Issue 2 2004
Roger S. Riley
Abstract The computer and the digital camera provide a unique means for improving hematology education, research, and patient service. High quality photographic images of gross specimens can be rapidly and conveniently acquired with a high-resolution digital camera, and specialized digital cameras have been developed for photomicroscopy. Digital cameras utilize charge-coupled devices (CCD) or Complementary Metal Oxide Semiconductor (CMOS) image sensors to measure light energy and additional circuitry to convert the measured information into a digital signal. Since digital cameras do not utilize photographic film, images are immediately available for incorporation into web sites or digital publications, printing, transfer to other individuals by email, or other applications. Several excellent digital still cameras are now available for less than $2,500 that capture high quality images comprised of more than 6 megapixels. These images are essentially indistinguishable from conventional film images when viewed on a quality color monitor or printed on a quality color or black and white printer at sizes up to 11×14 inches. Several recent dedicated digital photomicroscopy cameras provide an ultrahigh quality image output of more than 12 megapixels and have low noise circuit designs permitting the direct capture of darkfield and fluorescence images. There are many applications of digital images of pathologic specimens. Since pathology is a visual science, the inclusion of quality digital images into lectures, teaching handouts, and electronic documents is essential. A few institutions have gone beyond the basic application of digital images to developing large electronic hematology atlases, animated, audio-enhanced learning experiences, multidisciplinary Internet conferences, and other innovative applications. Digital images of single microscopic fields (single frame images) are the most widely utilized in hematology education at this time, but single images of many adjacent microscopic fields can be stitched together to prepare "zoomable" panoramas that encompass a large part of a microscope slide and closely simulate observation through a real microscope. With further advances in computer speed and Internet streaming technology, the virtual microscope could easily replace the real microscope in pathology education. Later in this decade, interactive immersive computer experiences may completely revolutionize hematology education and make the conventional lecture and laboratory format obsolete. Patient care is enhanced by the transmission of digital images to other individuals for consultation and education, and by the inclusion of these images in patient care documents. In research laboratories, digital cameras are widely used to document experimental results and to obtain experimental data. J. Clin. Lab. Anal. 18:91,128, 2004. © 2004 Wiley-Liss, Inc. [source]


Compound-specific stable-isotope (,13C) analysis in soil science

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2005
Bruno Glaser
Abstract This review provides current state of the art of compound-specific stable-isotope-ratio mass spectrometry (,13C) and gives an overview on innovative applications in soil science. After a short introduction on the background of stable C isotopes and their ecological significance, different techniques for compound-specific stable-isotope analysis are compared. Analogous to the ,13C analysis in bulk samples, by means of elemental analyzer,isotope-ratio mass spectrometry, physical fractions such as particle-size fractions, soil microbial biomass, and water-soluble organic C can be analyzed. The main focus of this review is, however, to discuss the isotope composition of chemical fractions (so-called molecular markers) indicating plant- (pentoses, long-chain n-alkanes, lignin phenols) and microbial-derived residues (phospholipid fatty acids, hexoses, amino sugars, and short-chain n-alkanes) as well as other interesting soil constituents such as "black carbon" and polycyclic aromatic hydrocarbons. For this purpose, innovative techniques such as pyrolysis,gas chromatography,combustion,isotope-ratio mass spectrometry, gas chromatography,combustion,isotope-ratio mass spectrometry, or liquid chromatography,combustion,isotope-ratio mass spectrometry were compared. These techniques can be used in general for two purposes, (1) to quantify sequestration and turnover of specific organic compounds in the environment and (2) to trace the origin of organic substances. Turnover times of physical (sand < silt < clay) and chemical fractions (lignin < phospholipid fatty acids < amino sugars , sugars) are generally shorter compared to bulk soil and increase in the order given in brackets. Tracing the origin of organic compounds such as polycyclic aromatic hydrocarbons is difficult when more than two sources are involved and isotope difference of different sources is small. Therefore, this application is preferentially used when natural (e.g., C3-to-C4 plant conversion) or artificial (positive or negative) 13C labeling is used. Substanzspezifische Stabilisotopenanalyse (,13C) in der Bodenforschung Dieser Artikel fasst den Stand der Forschung bezüglich der substanzspezifischen Stabilisotopenanalyse (,13C) zusammen. Innovative Anwendungen und ein Ausblick für künftige Forschungsaktivitäten werden anhand von Fallbeispielen gegeben. Zunächst wird die ökologische Bedeutung von stabilen C-Isotopen kurz erläutert. Daran schließt sich ein methodischer Teil an, in welchem die verschiedenen Techniken gegenüber gestellt werden. Analog zu ,13C-Messungen der Feinerde mittels Elementaranalysator-Isotopenverhältnis-Massenspektrometrie können physikalisch isolierte Fraktionen (z.,B. Korngrößenfraktionen, mikrobielle Biomasse, DOC) analysiert werden. Der Schwerpunkt dieses Übersichtsartikels liegt jedoch in der Diskussion der C-Isotopensignatur chemischer Fraktionen (sog. Biomarker), welche Rückschlüsse auf Herkunft und Dynamik pflanzlicher (Pentosen, langkettige n-Alkane, Ligninphenole) und mikrobieller Rückstände (Phospholipidfettsäuren, Hexosen, Aminozucker und kurzkettige n-Alkane) sowie anderer interessanter Substanzen im Boden erlaubt wie z.,B. ,Black Carbon" und polyzyklische aromatische Kohlenwasserstoffe. Zu diesem Zweck kommen innovative Techniken zum Einsatz wie z.,B. Pyrolyse-Gaschromatographie-Isotopenverhältnismassenspektrometrie, Gaschromatographie-Verbrennungs-Isotopenverhältnismassenspektrometrie und Flüssigkeitschromatographie-Oxidations-Isotopenverhältnismassenspektrometrie. Innovative ökologische Anwendungen werden erläutert, welche sich prinzipiell in zwei Kategorien einteilen lassen: (1) Quantifizierung der Sequestrierung und des Umsatzes dieser Verbindungen in der Umwelt; (2) Untersuchung der Herkunft spezifischer organischer Substanzen. Umsatzzeiten physikalischer (Sand < Schluff < Ton) und chemischer Fraktionen (Lignin < Phospholipidfettsäuren < Aminozucker , Zucker) sind generall kleiner als jene der gesamten organischen Substanz in der Feinerde und nehmen in der in Klammern angegebenen Reihenfolge zu. Die Untersuchung der Herkunft organischer Substanzen (z.,B. polyzyklischer aromatischer Kohlenwasserstoffe) ist problematisch, weil die Unterschiede der Isotopensignatur verschiedener Quellen gering sind und meist mehr als zwei Quellen zur Isotopensignatur des untersuchten Biomarkers beitragen. Deswegen sollte die Untersuchung der Herkunft organischer Substanzen auf Tracer-Experimente beschränkt werden, wie z.,B. nach natürlicher (C3-C4-Pflanzenwechsel) bzw. künstlicher (13C-An- oder -Abreicherung) Markierung. [source]


Investigation of basalt fiber composite aging behavior for applications in transportation,

POLYMER COMPOSITES, Issue 5 2006
Qiang Liu
New materials such as basalt fiber offer the promise of innovative applications in transportation because of documented strengths (V. Ramakrishnan, N.S. Tolmare, and V. Brik, "NCHRP-IDEA Program Project Final Report, " Transportation Research Board, Washington, DC, (1998)). Previously, we found that mechanical properties of basalt twill fabric-reinforced polymer composites were comparable to composites reinforced with glass fabrics of similar structures [Q. Liu, M.T. Shaw, R.S. Parnas, and A.M. McDonnell, Polymer Composites, 27(1), 41 (2006)]. Use in transportation also requires knowledge of environmental durability. This study reports the tolerance of basalt-fiber-reinforced polymer composites to salt water immersion, moisture absorption, temperature, and moisture cycling. Parallel tests were conducted for the corresponding glass-reinforced polymer composites. Aging for 240 days in salt water or water decreased the Young's modulus and tensile strength of basalt composites slightly but significantly (p < 0.05). Freeze-thaw cycling up to 199 cycles did not change the shear strength significantly, but aging in hot (40°C) salt water or water did decrease the shear strength of basalt composites (p < 0.05). The aging results indicate that the interfacial region in basalt composites may be more vulnerable to damage than that in glass composites. POLYM. COMPOS., 27:475,483, 2006. © 2006 Society of Plastics Engineers [source]


Designing digital information technologies for children.

PROCEEDINGS OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE & TECHNOLOGY (ELECTRONIC), Issue 1 2003
Sponsored by SIG USE
Developing digital information technologies appropriate for children can be challenging, particularly since young people have their own interests, abilities, curiosities, and information needs that can be continually changing. Young people are not "just short adults" but an entirely different user population with their own culture, norms and complexities. With the emergence of children as important consumers of digital information, their role in the design of new technologies has been maximized. The speakers will explore national and international digital libraries that have been designed for children using innovative applications of technologies. In addition, they will discuss challenges and issues in designing digital information for young people. [source]


Nanoparticles by chemical synthesis, processing to materials and innovative applications,

APPLIED ORGANOMETALLIC CHEMISTRY, Issue 5 2001
Helmut Schmidt
Abstract Nanoparticles have been fabricated by using chemical synthesis routes under specific conditions. During a precipitation process from liquid phases, surface controlling agents (SCAs) have been added during or shortly after the formation of precipitates. These interfere with the nucleating and growing particle to avoid agglomeration and to control size. Nanoparticles from many systems have been fabricated. If the SCAs are bifunctional, the surfaces chemistry could be tailored and the zeta potential of these particles was tailored also. SiO2 particles have been used for gene targeting using this approach. In other investigations, FeOx nanoparticles have been surface modified by amino groupings together with a sonochemical route to obtain very stable coatings. These particles have been used for in vitro tumor cell penetration and hyperthermal treatment. Boehmite nanoparticles were used to serve as condensation catalysts to prepare very hard transparent coatings for polycarbonate and an overcoat with polymerizable nanoparticles was used to produce anti-reflective and ultrahard coatings. In systems with incorporated fluoro silanes, leading to low surface free energy coatings, nanoparticles were used to tailor the fluorine depth profile in self-aligning transparent easy-to-clean coatings by influencing the critical micelle concentration. The examples show the usefulness of the chemical nanoparticle approach for nanocomposite fabrication and the high potential of these materials for medical and industrial application. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Paramagnetic Liposomes as Innovative Contrast Agents for Magnetic Resonance (MR) Molecular Imaging Applications

CHEMISTRY & BIODIVERSITY, Issue 10 2008
Enzo Terreno
Abstract This article illustrates some innovative applications of liposomes loaded with paramagnetic lanthanide-based complexes in MR molecular imaging field. When a relatively high amount of a GdIII chelate is encapsulated in the vesicle, the nanosystem can simultaneously affect both the longitudinal (R1) and the transverse (R2) relaxation rate of the bulk H2O H-atoms, and this finding can be exploited to design improved thermosensitive liposomes whose MRI response is not longer dependent on the concentration of the probe. The observation that the liposome compartmentalization of a paramagnetic LnIII complex induce a significant R2 enhancement, primarily caused by magnetic susceptibility effects, prompted us to test the potential of such agents in cell-targeting MR experiments. The results obtained indicated that these nanoprobes may have a great potential for the MR visualization of cellular targets (like the glutamine membrane transporters) overexpressing in tumor cells. Liposomes loaded with paramagnetic complexes acting as NMR shift reagents have been recently proposed as highly sensitive CEST MRI agents. The main peculiarity of CEST probes is to allow the MR visualization of different agents present in the same region of interest, and this article provides an illustrative example of the in vivo potential of liposome-based CEST agents. [source]


Click Chemistry and Medicinal Chemistry: A Case of "Cyclo- Addiction"

CHEMMEDCHEM, Issue 5 2008
D. Moorhouse
Click chemistry is chemical philosophy conceived to meet the growing demands of drug discovery. In this minireview, we discuss some of the most recent and innovative applications of click chemistry in medicinal chemistry. [source]