Home About us Contact | |||
Inner Rim (inner + rim)
Selected AbstractsPetrology of the Miller Range 03346 nakhlite in comparison with the Yamato-000593 nakhliteMETEORITICS & PLANETARY SCIENCE, Issue 2 2007N. IMAE The main-phase modal abundances are 67.7 vol% augite, 0.8 vol% olivine, and 31.5 vol% mesostasis. Among all known nakhlites, MIL 03346's modal abundance of olivine is the smallest and of mesostasis is the largest. Augite occurs as cumulus phenocrysts having a homogeneous core composition (En36,38Fs24,22Wo40), which is identical with other nakhlites. They accompany thin ferroan rims divided into inner and outer rims with a compositional gap at the boundary between the two rims. Olivine grains have magnesian cores (Fa , 55) and show normal zoning toward ferroan rims (Fa , 84). Mesostasis consists mostly of glass (26.0 vol%) with minor skeletal fayalites, skeletal titanomagnetites, acicular phosphate, massive cristobalite, and sulfides. We conclude that MIL 03346 is the most rapidly cooled nakhlite among all known nakhlites based on the petrography. We obtain the intercumulus melt composition for MIL 03346 from the mass balance calculation using the modal abundances and discuss the crystallization sequence of MIL 03346 in comparison with that of Yamato (Y-) 000593. Although magnesian olivines of Y-000593 are phenocrystic, magnesian olivine grains of MIL 03346 seem to have texturally crystallized from the intercumulus melt. After the MIL 03346 magma intruded upward to the Martian surficial zone, the magnesian olivine crystallized, and then the ferroan inner rim formed on phenocrystic core augite. The outer rim of phenocrystic augites formed after the crystallization of skeletal fayalites and skeletal titanomagnetites, resulting in a compositional gap between the inner and outer rims. Finally, glassy mesostasis formed from the residual melt. This crystallization sequence of MIL 03346 is different from those of other nakhlites, including Y-000593. [source] Petrology of the Yamato nakhlitesMETEORITICS & PLANETARY SCIENCE, Issue 11 2005N. Imae They are paired cumulate clinopyroxenites. We obtained the intercumulus melt composition of the Yamato nakhlites and here call it the Yamato intercumulus melt (YIM). The YIM crystallized to form the augite rims, the olivine rims and the mesostasis phases in the cumulates. The augite rims consist of two layers: inner and outer. The crystallization of the inner rim drove the interstitial melt into the plagioclase liquidus field. Subsequently, the residual melt crystallized pigeonites and plagioclase to form the outer rims and the mesostasis. Three types of inclusions were identified in olivine phenocrysts: rounded vitrophyric, angular vitrophyric, and monomineralic augite inclusions. The monomineralic augite inclusions are common and may have been captured by growing olivine phenocrysts. The rounded vitrophyric inclusions are rare and may represent the composition of middle-stage melts, whereas the angular vitrophyric inclusions seem to have been derived from fractionated late-stage melts. Glass inclusions occur in close association with titanomagnetite and ferroan augite halo in phenocryst core augites and the assemblages may be magmatic inclusions in augites. We compared the YIM with compositions of magmatic inclusions in olivine and augite. The composition of magmatic inclusions in augite is similar to the YIM. Phenocrystic olivines contain exsolution lamellae, augite-magnetite aggregates, and symplectites in the cores. The symplectites often occur at the boundaries between olivine and augite grains. The aggregates, symplectite and lamellae formed by exsolution from the host olivine at magmatic temperatures. We present a formational scenario for nakhlites as follows: (1) accumulation of augite, olivine, and titanomagnetite phenocrysts took place on the floor of a magma chamber; (2) olivine exsolved augite and magnetite as augite-magnetite aggregates, symplectites and lamellae; (3) the overgrowth on olivine phenocrysts formed their rims, and the inner rims crystallized on augite phenocryst cores; and finally, (4) the outer rim formed surrounding the inner rims of augite phenocrysts, and plagioclase and minor minerals crystallized to form mesostasis under a rapid cooling condition, probably in a lava flow or a sill. [source] Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star clusterMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010M. Schartmann ABSTRACT Recently, high-resolution observations with the help of the near-infrared adaptive optics integral field spectrograph Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the Very Large Telescope proved the existence of massive and young nuclear star clusters in the centres of a sample of Seyfert galaxies. With the help of three-dimensional high-resolution hydrodynamical simulations with the Pluto code, we follow the evolution of such clusters, especially focusing on stellar mass loss feeding gas into the ambient interstellar medium and driving turbulence. This leads to a vertically wide distributed clumpy or filamentary inflow of gas on large scales (tens of parsec), whereas a turbulent and very dense disc builds up on the parsec scale. In order to capture the relevant physics in the inner region, we treat this disc separately by viscously evolving the radial surface density distribution. This enables us to link the tens of parsec-scale region (accessible via SINFONI observations) to the (sub-)parsec-scale region (observable with the mid-infrared interferometer instrument and via water maser emission). Thereby, this procedure provides us with an ideal testbed for data comparison. In this work, we concentrate on the effects of a parametrized turbulent viscosity to generate angular momentum and mass transfer in the disc and additionally take star formation into account. Most of the input parameters are constrained by available observations of the nearby Seyfert 2 galaxy NGC 1068, and we discuss parameter studies for the free parameters. At the current age of its nuclear starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8,0.9 pc, gas masses of 106 M, and mass transfer rates of 0.025 M, yr,1 through the inner rim of the disc. This shows that our large-scale torus model is able to approximately account for the disc size as inferred from interferometric observations in the mid-infrared and compares well to the extent and mass of a rotating disc structure as inferred from water maser observations. Several other observational constraints are discussed as well. [source] Petrology of the Yamato nakhlitesMETEORITICS & PLANETARY SCIENCE, Issue 11 2005N. Imae They are paired cumulate clinopyroxenites. We obtained the intercumulus melt composition of the Yamato nakhlites and here call it the Yamato intercumulus melt (YIM). The YIM crystallized to form the augite rims, the olivine rims and the mesostasis phases in the cumulates. The augite rims consist of two layers: inner and outer. The crystallization of the inner rim drove the interstitial melt into the plagioclase liquidus field. Subsequently, the residual melt crystallized pigeonites and plagioclase to form the outer rims and the mesostasis. Three types of inclusions were identified in olivine phenocrysts: rounded vitrophyric, angular vitrophyric, and monomineralic augite inclusions. The monomineralic augite inclusions are common and may have been captured by growing olivine phenocrysts. The rounded vitrophyric inclusions are rare and may represent the composition of middle-stage melts, whereas the angular vitrophyric inclusions seem to have been derived from fractionated late-stage melts. Glass inclusions occur in close association with titanomagnetite and ferroan augite halo in phenocryst core augites and the assemblages may be magmatic inclusions in augites. We compared the YIM with compositions of magmatic inclusions in olivine and augite. The composition of magmatic inclusions in augite is similar to the YIM. Phenocrystic olivines contain exsolution lamellae, augite-magnetite aggregates, and symplectites in the cores. The symplectites often occur at the boundaries between olivine and augite grains. The aggregates, symplectite and lamellae formed by exsolution from the host olivine at magmatic temperatures. We present a formational scenario for nakhlites as follows: (1) accumulation of augite, olivine, and titanomagnetite phenocrysts took place on the floor of a magma chamber; (2) olivine exsolved augite and magnetite as augite-magnetite aggregates, symplectites and lamellae; (3) the overgrowth on olivine phenocrysts formed their rims, and the inner rims crystallized on augite phenocryst cores; and finally, (4) the outer rim formed surrounding the inner rims of augite phenocrysts, and plagioclase and minor minerals crystallized to form mesostasis under a rapid cooling condition, probably in a lava flow or a sill. [source] |