Home About us Contact | |||
Inner Leaflet (inner + leaflet)
Selected AbstractsRole of the plasma membrane leaflets in drug uptake and multidrug resistanceFEBS JOURNAL, Issue 5 2010Hagar Katzir The present study aimed to investigate the role played by the leaflets of the plasma membrane in the uptake of drugs into cells and in their extrusion by P-glycoprotein and multidrug resistance-associated protein 1. Drug accumulation was monitored by fluorescence resonance energy transfer from trimethylammonium-diphenyl-hexatriene (TMA-DPH) located at the outer leaflet to a rhodamine analog. Uptake of dye into cells whose mitochondria had been inactivated was displayed as two phases of TMA-DPH fluorescence quenching. The initial phase comprised a rapid drop in fluorescence that was neither affected by cooling the cells on ice, nor by activity of mitochondria or ABC transporters. This phase reflects the association of dye with the outer leaflet of the plasma membrane. The subsequent phase of TMA-DPH fluorescence quenching occurred in drug-sensitive cell lines with a half-life in the range 20,40 s. The second phase of fluorescence quenching was abolished by incubation of the cells on ice and was transiently inhibited in cells with active mitochondria. Thus, the second phase of fluorescence quenching reflects the accumulation of dye in the cytoplasmic leaflet of the plasma membrane, presumably as a result of flip-flop of dye across the plasma membrane and slow diffusion from the inner leaflet into the cells. Whereas activity of P-glycoprotein prevented the second phase of fluorescence quenching, the activity of multidrug resistance-associated protein 1 had no effect on this phase. Thus, P-glycoprotein appears to pump rhodamines from the cytoplasmic leaflet either to the outer leaflet or to the outer medium. [source] Rho A participates in the regulation of phosphatidylserine-dependent procoagulant activity at the surface of megakaryocytic cellsJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 4 2004C. Kunzelmann Summary. Once exposed at the external surface of activated platelets or apoptotic cells, phosphatidylserine, an anionic phospholipid mostly sequestered in the inner leaflet of the plasma membrane, plays essential roles in hemostasis and phagocytosis. The mechanism governing the migration of the phosphatidylserine to the exoplasmic leaflet is not yet fully understood. We have proposed that store-operated calcium entry (SOCE) constitutes a key step of this process. ERK pathway is among the elements modulating SOCE and phosphatidylserine externalization in megakaryocytic HEL cells. Here, we investigated the role of small GTPase Rho A, which may interact with the ERK pathway. Specific inhibitors of Rho A (exoenzyme C3 and toxin B) reduced both SOCE and phosphatidylserine-dependent procoagulant activity. Simultaneous inhibition of Rho A and extracellular signal-regulated kinase (ERK) pathways did not elicit further reduction with respect to each individual one. Rho A can regulate SOCE and phosphatidylserine exposure through the reorganization of actin cytoskeleton, but not through ROCK pathway. Hence, Rho A is another regulatory element for the completion of SOCE-induced phosphatidylserine transmembrane redistribution in HEL cells. [source] Lipid trafficking to the outer membrane of Gram-negative bacteriaMOLECULAR MICROBIOLOGY, Issue 3 2006William T. Doerrler Summary The envelope of Gram-negative bacteria is composed of two distinct lipid membranes: an inner membrane and outer membrane. The outer membrane is an asymmetric bilayer with an inner leaflet of phospholipids and an outer leaflet of lipopolysaccharide. Most of the steps of lipid synthesis occur within the cytoplasmic compartment of the cell. Lipids must then be transported across the inner membrane and delivered to the outer membrane. These topological features combined with the ability to apply the tools of biochemistry and genetics make the Gram-negative envelope a fascinating model for the study of lipid trafficking. In addition, as lipopolysaccharide is essential for growth of most strains and is a potent inducer of the mammalian innate immune response via activation of Toll-like receptors, Gram-negative lipid transport is also a promising target for the development of novel antibacterial and anti-inflammatory compounds. This review focuses on recent developments in our understanding of lipid transport across the inner membrane and to the outer membrane of Gram-negative bacteria. [source] Inward relocation of exogenous phosphatidylserine triggered by IGF-1 in non-apoptotic C2C12 cells is concentration dependentCELL BIOCHEMISTRY AND FUNCTION, Issue 6 2005Cyril Rauch Abstract The plasma membrane is composed of two leaflets that are asymmetric with regard to their phospholipid composition with phosphatidylserine (PS) predominantly located within the inner leaflet whereas other phospholipids such as phosphatidylcholine (PC) are preferentially located in the outer leaflet. An intimate relationship between cellular physiology and the composition of the plasma membrane has been demonstrated, with for example apoptosis requiring PS exposure for macrophage recognition. In skeletal muscle development, differentiation also requires PS exposure in myoblasts to create cell,cell contact areas allowing the formation of multinucleate myotubes. Although it is clearly established that membrane composition/asymmetry plays an important role in cellular physiology, the role of cytokines in regulating this asymmetry is still unclear. When incubated with myoblasts, insulin-like growth factor I (IGF-1) has been shown to promote proliferation versus differentiation in a concentration dependent manner and therefore, may be a potential candidate regulating cell membrane asymmetry. We show, in non-apoptotic C2C12 cells, that relocation of an exogenous PS analogue, from the outer into the inner leaflet, is accelerated by IGF-1 in a concentration-dependent manner and that maintenance of membrane asymmetry triggered by IGF-1 is however independent of the PI3K inhibitor wortmannin. Copyright © 2005 John Wiley & Sons, Ltd. [source] |