Inner Enamel Epithelium (inner + enamel_epithelium)

Distribution by Scientific Domains


Selected Abstracts


Expression survey of genes critical for tooth development in the human embryonic tooth germ

DEVELOPMENTAL DYNAMICS, Issue 5 2007
Dahe Lin
Abstract In the developing murine tooth, the expression patterns of numerous regulatory genes have been examined and their roles have begun to be revealed. To unveil the molecular mechanisms that regulate human tooth morphogenesis, we examined the expression patterns of several regulatory genes, including BMP4, FGF8, MSX1, PAX9, PITX2, and SHOX2, and compared them with that found in mice. All of these genes are known to play critical roles in murine tooth development. Our results show that these genes exhibit basically similar expression patterns in the human tooth germ compared with that in the mouse. However, slightly different expression patterns were also observed for some of the genes at certain stages. For example, MSX1 expression was detected in the inner enamel epithelium in addition to the dental mesenchyme at the bell stage of the human tooth. Moreover, FGF8 expression remained in the dental epithelium at the cap stage, while PAX9 and SHOX2 expression was detected in both dental epithelium and mesenchyme of the human tooth germ. Our results indicate that, although slight differences exist in the gene expression patterns, the human and mouse teeth not only share considerable homology in odontogenesis but also use similar underlying molecular networks. Developmental Dynamics 236:1307,1312, 2007. © 2007 Wiley-Liss, Inc. [source]


Differentiation of human ameloblast-lineage cells in vitro

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2006
Qiaomei Yan
Previous studies have shown that ameloblast-like cells can be selectively cultured from the enamel organ in a serum-free medium with low calcium concentrations. The purpose of this study was to further characterize this culture system to identify differentiated ameloblast-lineage cells. Tooth organs from 19,24-wk-old fetal cadavers were either frozen and cryosectioned for immunostaining, or digested in collagenase/dispase for cell culture. The cells were grown in keratinocyte media supplemented with 0.05 mM calcium, and characterized by morphology and immunofluorescence. Epithelial clones with two distinct morphologies, including smaller cobblestone-shaped cells and larger (5,15 times in size) rounded cells, began to form between day 8 and day 12 after culture. The cobblestone-shaped cells continued to proliferate in culture, while the larger cells proliferated slowly or not at all. These larger cells formed filopodia, usually had two or more nuclei and a radiating cytoplasm at the cell margin, and were more abundant with increasing time in culture. Both cell types stained for cytokeratin 14, and the larger cells appeared more differentiated, showing stronger staining for amelogenin and ameloblastin. Immunofluorescence of the tooth bud sections showed staining for these matrix proteins as ameloblasts differentiated from the inner enamel epithelium. These results show the successful culture of differentiating ameloblast-lineage cells, and lay a foundation for use of these cells to further understand ameloblast biology with application to tooth enamel tissue engineering. [source]


The taming of the shrew milk teeth

EVOLUTION AND DEVELOPMENT, Issue 4 2008
Elina Järvinen
SUMMARY A characteristic feature of mammalian dentition is the evolutionary reduction of tooth number and replacement. Because mice do not replace teeth, here we used Sorex araneus, the common shrew, as a model to investigate the loss of tooth replacement. Historically, shrews have been reported to initiate the development of several, milk or deciduous teeth but these soon become rudimentary and only the replacement teeth erupt. Shrews thus offer a living example of a derived mammalian pattern where the deciduous tooth development is being suppressed. Based on histological and gene expression analyses of serial sections, we suggest that S. araneus has discernible tooth replacement only in the premolar 4 (P4) position. Both generations of teeth express Shh in the enamel knot and in the inner enamel epithelium. Nevertheless, the deciduous P4 (dP4) is reduced in size during embryogenesis and is eventually lost without becoming functional. Analysis of growth shows that P4 replaces the dP4 in a "double-wedge" pattern indicative of competitive replacement where the suppression of the deciduous tooth coincides with the initiation of its replacement. Because activator,inhibitor mechanisms have been implicated in adjacent mouse molars and in transgenic mice with continuous tooth budding, we suggest that evolutionary suppression of deciduous teeth may involve early activation of replacement teeth, which in turn begin to suppress their deciduous predecessors. [source]


Development of the dentition: four-dimensional visualization and open questions concerning the morphogenesis of tooth form and occlusion

ORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 2003
RJ Radlanski
Structured Abstract Author, Radlanski RJ Objectives , The formation of the dental primordial should be visualized with special reference to characteristic differences for each single primordium. Until today, it has not been clear how traffic of the ameloblasts is controlled, how the folding pattern of the occlusal relief is generated or how the enamel production is terminated at the enamel surface. Design , Using computer-aided reconstructions from histological serial sections, the dental primordial were visualized and, using fractured enamel specimens, the traces of each single ameloblast were followed by means of scanning electron microscopy. In this way, the developmental movements of the inner enamel epithelium can be reconstructed. Results , Gathering morphological knowledge, three-dimensional polygon sets of shape data were input into a computer workstation and animated by means of the software Soft Image (Microsoft). Conclusions , The development of the human primary and permanent dentition was animated to simulate growth. [source]


Spatiotemporal expression of NGFR during pre-natal human tooth development

ORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 2 2002
KB Becktor
Structured Abstract Authors, Becktor KB, Hansen BF, Nolting D, Kjær I. Objectives, The relation between nerve growth factor receptor (NGFR) in the human pre-natal tooth buds and the dental follicle was investigated. In particular, we sought to determine if there is a specific pattern of p75NGFR expression in developing human tooth buds and their surrounding tissue. Setting and Sample Population, The Department of Orthodontics at Copenhagen University, Denmark. Histological sections from 11 fetuses, aged 11,21 gestational weeks. Method, The sections were studied by conventional immunohistochemistry. Results, Specific spatiotemporal patterns of p75NGFR reactions were observed in the tooth buds and dental follicle: Before matrix production by the ameloblasts, the entire inner enamel epithelium and the entire dental follicle display p75NGFR immunoreactivity; after matrix production is initiated, the immunoreactivity of the matrix producing cells is lost, as is that of the dental follicle adjacent to these matrix-producing cells. Conclusion, A unique spatiotemporal distribution of NGFR in the pre-eruptive human tooth bud was demonstrated. [source]