Home About us Contact | |||
Inner Diameter (inner + diameter)
Selected AbstractsDouble Wall Carbon Nanotubes with an Inner Diameter of 0.4 nmCHEMICAL VAPOR DEPOSITION, Issue 3 2003L. Ci Selective preparation of double wall carbon nanotubes (DWCNTs) is achieved by a floating iron catalyst CVD method with sufur promotion. SEM shows that the product consists of entangled nanotubes. HRTEM and Raman scattering have revealed that the smallest inner diameter of as-grown carbon nanotubes is 0.4 nm (see Figure). The smallest diameter is found to be produced at the low carbon partial pressure with low sulfur content. [source] Contribution of Na+/Ca2+ exchanger to the regulation of myogenic tone in isolated rat small arteriesACTA PHYSIOLOGICA, Issue 2 2001S. Horiguchi The contribution of the Na+/Ca2+ exchanger to the myogenic vascular tone was examined in rat isolated skeletal muscle small arteries (ASK) with pronounced myogenic tone and mesenteric small arteries (AMS) with little myogenic tone. Myogenic tone was assessed by the vascular inner diameter at transmural pressures of 40 and 100 mmHg. To depress the Na+/Ca2+ exchanger, the extracellular Na+ concentration ([Na+]o) was lowered from 143 to 1.2 mM by substituting choline-Cl for NaCl. The ASK developed significant myogenic tone and constricted further in low [Na+]o. Nifedipine (1 ,M) reduced both myogenic tone and low [Na+]o-induced contraction. Because the membrane potential of ASK was not changed by low [Na+]o (,35 ± 2 mV at 143 mM [Na+]o, ,37 ± 3 mV at 1.2 mM [Na+]o), depolarization-induced Ca2+ influx was not a cause of the low [Na+]o-induced contraction. The AMS did not develop significant myogenic tone. Although low [Na+]o also constricted AMS, the magnitude of constriction was significantly weaker than that in ASK (17 ± 4 vs. 47 ± 6%, P < 0.01, at 58 mM Na+). With Bay K 8644, AMS developed myogenic tone, and low [Na+]o-induced constriction was significantly increased. In conclusion, Na+/Ca2+ exchanger may play an important role in regulating myogenic tone, likely via mediating Ca2+ -extrusion. [source] Optimization of capillary electrophoretic enantioseparation for basic drugs with native ,-CD as a chiral selectorELECTROPHORESIS, Issue 12 2006Nerissa L. Deńola Abstract This study presents the advantages of the 20,µm inner diameter (id) capillary for the enantioseparation of ten basic drugs with native ,-CD as the chiral selector. The apparent binding constants of each enantiomeric pair were determined to calculate the optimum ,-CD concentration ([,-CD]opt) and the optimization was subsequently carried out. Comparison of the 20,µm id with 50,µm id were made in terms of the results obtained in the optimization and detection limits. Applying the optimum conditions for each compound, reproducible results (RSD from 0,3; n>5) were obtained for the 20,µm id capillary. Although the sensitivity is lower in the 20,µm id capillary, the LOD determined using this capillary is still found to be acceptable for the ten basic drugs studied. Enhanced resolution and faster analysis times were the main advantages observed with the use of this capillary in enantioseparation. [source] Hollow Mesoporous Zirconia Nanocapsules for Drug DeliveryADVANCED FUNCTIONAL MATERIALS, Issue 15 2010Shaoheng Tang Abstract Hollow mesoporous zirconia nanocapsules (hm -ZrO2) with a hollow core/porous shell structure are demonstrated as effective vehicles for anti-cancer drug delivery. While the highly porous feature of the shell allows the drug, doxorubicin(DOX), to easily pass through between the inner void space and surrounding environment of the particles, the void space in the core endows the nanocapsules with high drug loading capacity. The larger the inner hollow diameter, the higher their DOX loading capacity. A loading of 102% related to the weight of hm -ZrO2 is achieved by the nanocapsules with an inner diameter of 385,nm. Due to their pH-dependent charge nature, hm -ZrO2 loaded DOX exhibit pH-dependent drug releasing kinetics. A lower pH offers a faster DOX release rate from hm -ZrO2. Such a property makes the loaded DOX easily release from the nanocapsules when up-taken by living cells. Although the flow cytometry reveals more uptake of hm -ZrO2 particles by normal cells, hm -ZrO2 loaded DOX release more drugs in cancer cells than in normal cells, leading to more cytotoxicity toward tumor cells and less cytotoxicity to healthy cells than free DOX. [source] Macro- and Micro-Purge Soil-Gas Sampling Methods for the Collection of Contaminant VaporsGROUND WATER MONITORING & REMEDIATION, Issue 1 2009Brian A. Schumacher Purging influence on soil-gas concentrations for volatile organic compounds (VOCs), as affected by sampling tube inner diameter and sampling depth (i.e., system volume) for temporary probes in fine-grained soils, was evaluated at three different field sites. A macro-purge sampling system consisted of a standard, hollow, 3.2-cm outer diameter (OD) drive probe with a retractable sampling point attached to an appropriate length of 0.48-cm inner diameter (ID) Teflon® tubing. The macro-purge sampling system had a purge system volume of 24.5 mL at a 1-m depth. In contrast, the micro-purge sampling systems were slightly different between the field sites and consisted of a 1.27-cm OD drive rod with a 0.10-cm ID stainless steel tube or a 3.2-cm OD drive rod with a 0.0254-cm inner diameter stainless steel tubing resulting in purge system volumes of 1.2 and 7.05 mL at 1-m depths, respectively. At each site and location within the site, with a few exceptions, the same contaminants were identified in the same relative order of abundances indicating the sampling of the same general soil atmosphere. However, marked differences in VOC concentrations were identified between the sampling systems, with micro-purge samples having up to 27 times greater concentrations than their corresponding macro-purge samples. The higher concentrations are the result of a minimal disturbance of the ambient soil atmosphere during purging. The minimal soil-gas atmospheric disturbance of the micro-purge sampling system allowed for the collection of a sample that is more representative of the soil atmosphere surrounding the sampling point. That is, a sample that does not contain an atmosphere that has migrated from distance through the geologic material or from the surface in response to the vacuum induced during purging soil-gas concentrations. It is thus recommended that when soil-gas sampling is conducted using temporary probes in fine-grained soils, the sampling system use the smallest practical ID soil-gas tubing and minimize purge volume to obtain the soil-gas sample with minimal risk of leakage so that proper decisions, based on more representative soil-gas concentrations, about the site can be made. [source] Structural and Magnetic Properties of Various Ferromagnetic NanotubesADVANCED MATERIALS, Issue 45 2009Xiu-Feng Han Abstract The structural and magnetic properties of ferromagnetic nanotubes fabricated by a low cost electrodeposition method are investigated. The fabrication of various elemental ferromagnetic materials are described, such as Fe, Co, and Ni, and ferromagnetic alloys, such as NiFe, CoPt, CoFeB, and CoCrPt nanotube arrays, in aluminum oxide templates and polycarbonate membranes with different diameters, wall thicknesses, and lengths. The structural, magnetic, and magnetization reversal properties of these nanotubes are investigated as a function of the geometrical parameters. The angular dependence of the coercivity indicates a transition from the curling to the coherent mode for the ferromagnetic nanotubes. The results show that nanotube fabrication allows the outer and inner diameter, length, and thickness of the nanotubes to be tuned systematically. The magnetization processes of ferromagnetic nanotubes are influenced by the wall thickness. [source] Self-Assembled Nanoscale Ring Arrays from a Polystyrene- b -polyferrocenylsilane- b -poly(2-vinylpyridine)Triblock Terpolymer Thin FilmADVANCED MATERIALS, Issue 37 2009Vivian P. Chuang Hollow ring arrays with an outer and inner diameter of 33 and 11,nm, respectively, are formed from a thin film of poly-(styrene- b -ferrocenylethylmethylsilane- b -2-vinyl pyridine) (PS- b -PFS- b -P2VP) triblock terpolymer with a core/shell cylindrical morphology. The PS minority block forms a core surrounded by a PFS shell in a P2VP matrix; the core/shell structure is oriented perpendicularly to the film surface. The PS core and P2VP matrix blocks are partly removed using oxygen reactive ion etching, leaving ring patterns made from oxidized PFS. [source] Observation of neutral density variations accompanying streamer progression across air gapsIEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 1 2009Tetsuo Fukuchi Member Abstract Neutral density variations accompanying progression of streamers across needle-to-rod air gaps of length 0.75 and 1 m were observed with the use of a laser shadowgraph system consisting of astronomical telescopes for beam expansion and reduction, and an acousto-optic laser deflector for high-speed imaging. The system had a spatial resolution of about 1 mm over an annular observation region of outer diameter 28 cm and inner diameter 11 cm, and a temporal resolution in the order of microseconds. The system was also used to observe neutral density variations accompanying shock waves which resulted from a spark discharge. Copyright © 2009 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source] Preparation of poly(ester imide) ultrafine fibers by gas-jet/electrospinningJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2009Bing Wang Abstract In this study, ultrafine fibers of poly(ester imide) (PEI) were produced by gas-jet/electrospinning of its solutions in mixtures of phenol and dichloromethane (DCM). The process parameters, including the solution concentration, gas flow rate, applied voltage, tip-to-collector distance (TCD), and inner diameter of the metal needle, were investigated by scanning electron microscopy. The results show that the solution concentration, gas flow rate, TCD, and inner diameter of the needle were the most important process parameters influencing the average diameter and morphology of the PEI gas-jet/electrospun fibers. An increase in the solution concentration resulted in a larger average diameter in the PEI gas-jet/electrospun fibers. Mixed-bead fibers were obtained when the concentration of PEI in phenol/DCM was below 20 wt % during gas-jet/electrospinning. A larger diameter of the capillary and a smaller gas flow rate favored the formation of ultrafine fibers with thicker fibers. Thinner and uniform PEI fibers with an average diameter of 298 nm were formed at a TCD of 25 cm. On the basis of the systematic parameters study, uniform PEI ultrafine fibers with an average diameter of 293 nm were prepared by this gas-jet/electrospinning with the following optimal process parameters: the concentration of the polymer solution was 20 wt %, the gas flow rate was 10.0 L/min, the applied voltage was 25.0 kV, the TCD was 25 cm, and the inner diameter of the metal needle was 0.24 mm. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Electrospun polylactide/silk fibroin,gelatin composite tubular scaffolds for small-diameter tissue engineering blood vesselsJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2009Shudong Wang Abstract Many synthetic scaffolds have been used as vascular substitutes for clinical use. However, many of these scaffolds may not show suitable properties when they are exposed to physiologic vascular environments, and they may fail eventually because of some unexpected conditions. Electrospinning technology offers the potential for controlling the composition, structure, and mechanical properties of scaffolds. In this study, a tubular scaffold (inner diameter = 4.5 mm) composed of a polylactide (PLA) fiber outside layer and a silk fibroin (SF),gelatin fiber inner layer (PLA/SF,gelatin) was fabricated by electrospinning. The morphological, biomechanical, and biological properties of the composite scaffold were examined. The PLA/SF,gelatin composite tubular scaffold possessed a porous structure; the porosity of the scaffold reached 82 ± 2%. The composite scaffold achieved the appropriate breaking strength (1.28 ± 0.21 MPa) and adequate pliability (elasticity up to 41.11 ± 2.17% strain) and possessed a fine suture retention strength (1.07 ± 0.07 N). The burst pressure of the composite scaffold was 111.4 ± 2.6 kPa, which was much higher than the native vessels. A mitochondrial metabolic assay and scanning electron microscopy observations indicated that both 3T3 mouse fibroblasts and human umbilical vein endothelial cells grew and proliferated well on the composite scaffold in vitro after they were cultured for some days. The PLA/SF,gelatin composite tubular scaffolds presented appropriate characteristics to be considered as candidate scaffolds for blood vessel tissue engineering. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Preparation of poly(ether sulfone) nanofibers by gas-jet/electrospinningJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008Yi Lin Abstract Poly(ether sulfone) (PES) nanofibers were prepared by the gas-jet/electrospinning of its solutions in N,N -dimethylformamide (DMF). The gas used in this gas-jet/electrospinning process was nitrogen. The morphology of the PES nanofibers was investigated with scanning electron microscopy. The process parameters studied in this work included the concentration of the polymer solution, the applied voltage, the tip,collector distance (TCD), the inner diameter of the needle, and the gas flow rate. It was found from experimental results that the average diameter of the electrospun PES fibers depended strongly on these process parameters. A decrease in the polymer concentration in the spinning solutions resulted in the formation of nanofibers with a smaller diameter. The use of an 18 wt % polymer solution yielded PES nanofibers with an average diameter of about 80 nm. However, a morphology of mixed bead fibers was formed when the concentration of PES in DMF was below 20 wt % during gas-jet/electrospinning. Uniform PES nanofibers with an average diameter of about 200 nm were prepared by this electrospinning with the following optimal process parameters: the concentration of PES in DMF was 25 wt %, the applied voltage was 28.8 kV, the gas flow was 10.0 L/min, the inner diameter of the needle was 0.24 mm, the TCD was 20 cm, and the flow rate was 6.0 mL/h. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Melatonin interactions with blood pressure and vascular function during l -NAME-induced hypertensionJOURNAL OF PINEAL RESEARCH, Issue 2 2010Ludovit Paulis Abstract:, The mechanisms responsible for the antihypertensive effect of melatonin are not completely understood. To elucidate the possible role of the nitric oxide (NO) pathway in the hemodynamic actions of melatonin, the effects of this indolamine on vascular function during hypertension induced by the NO-synthase (NOS) inhibitor, N, -nitro- l -arginine-methyl ester (l -NAME) were investigated. Four groups of male adult Wistar rats were employed: control, L-NAME (40 mg/kg), melatonin (10 mg/kg) and l -NAME + melatonin for 5 wks. Systolic and diastolic blood pressure were measured invasively in the carotid artery. Conjugated dienes concentration (an oxidative load marker), NOS RNA expression and its activity and RNA expression of cyclooxygenase-(COX)-1 and COX-2 were determined in the aorta. Acetylcholine-induced responses and their NO-mediated component were evaluated in femoral and mesenteric artery. Moreover, endothelium-derived constricting factor (EDCF)-dependent vasoconstriction and inner diameter were determined in the femoral artery. Chronic l -NAME treatment induced hypertension, elevated the oxidative load and inhibited NOS activity. Moreover, impaired NO-dependent relaxation, augmented EDCF-constriction, increased COX-2 expression and reduced arterial inner diameter were observed. Melatonin added to l -NAME treatment completely prevented elevation of the oxidative load in the aorta. However, melatonin was not able to prevent NOS activity decline, elevation of COX-2 expression or the impairment of vascular responses (except moderate improvement in relaxation of small mesenteric arteries) and it exerted only slight antihypertensive effect. In conclusion, in addition to the reduction of the oxidative load, the restoration of the NO pathway seems to play an important role in the antihypertensive effect of melatonin. [source] Packing capillary electrochromatography columns using vacuum , A preliminary studyJOURNAL OF SEPARATION SCIENCE, JSS, Issue 14 2004Qishu Qu Abstract This paper introduces a novel method for packing Capillary Electrochromatography Columns (CEC). Using vacuum packing methodology, silica particles as small as 1 ,m were successfully packed into the capillary columns with 75 ,m inner diameter. The columns are very stable and show no noticeable loss in efficiency after 200 sample injections. The performance of these vacuum packed capillary columns was evaluated with a mixture of aromatic and non-aromatic compounds. A 24 cm long capillary column can produce peak efficiencies of around 45 000 plates for benzene. [source] Reduced-bore monolithic silica column modified with C8 -TEOS for reversed-phase electrochromatographyJOURNAL OF SEPARATION SCIENCE, JSS, Issue 9 2004Qishu Qu Abstract Monolithic silica columns of 2.7 mm ID were prepared and derivatized with C8 -TEOS and TEOS by on-column sol-gel reaction. These C8 large diameter monolithic silica columns gave 21 000 theoretical plates for aromatic hydrocarbons in 60% acetonitrile and 40% Tris-HCl buffer. The surface areas as well as the separation reproducibility were improved on coating by the sol-gel approach. Joule heating was greatly reduced by using monolithic columns to which fine quartz sand had been added during column preparation. Since this is a preliminary investigation on a monolithic column with such a large inner diameter, the separation efficiency was not so high as that presently achieved in normal capillary electrochromatography (CEC). However, use of the columns improved sample loadability and concentration detectability of electrochromatography, and semi-preparative separations could be performed. [source] Investigation of factors influencing the performance of open-tubular stationary phases in capillary electrochromatographyJOURNAL OF SEPARATION SCIENCE, JSS, Issue 9-10 2003Ruth Freitag Abstract Silica-based, open-tubular capillary columns bearing C8-moieties were produced by the sol gel approach. The influence of experimental conditions adjusted during the preparation of the stationary phase on the performance of the resulting capillary column were investigated in terms of the plate height, the resolution, and the capacity factors, taking the separation of three non-charged polyaromatic hydrocarbons (naphthalene, phenanthrene, pyrene) as example. Acetone served as EOF marker. The optimal synthesis protocol was then used to prepare columns for an analogous investigation of the chromatographic parameters, namely the mobile phase composition, the applied voltage and temperature, as well as the column length, thickness, and inner diameter on the performance of the capillary columns. [source] High-resolution blood flow velocity measurements in the human fingerMAGNETIC RESONANCE IN MEDICINE, Issue 4 2001M. Klarhöfer Abstract MR phase contrast blood flow velocity measurements in the human index finger were performed with triggered, nontriggered, and cine acquisition schemes. A strong (Gmax = 200 mT/m), small bore (inner diameter 12 cm) gradient system inserted in a whole body 3 Tesla MR scanner allowed high-resolution imaging at short echo times, which decreases partial volume effects and flow artifacts. Arterial blood flow velocities ranging from 4.9,19 cm/sec were measured, while venous blood flow was significantly slower at 1.5,7.1 cm/sec. Taking into account the corresponding vessel diameters ranging from 800 ,m to 1.8 mm, blood flow rates of 3.0,26 ml/min in arteries and 1.2,4.8 ml/min in veins are obtained. The results were compared to ultrasound measurements, resulting in comparable blood flow velocities in the same subjects. Magn Reson Med 45:716,719, 2001. © 2001 Wiley-Liss, Inc. [source] Self-organized nucleation layer for the formation of ordered arrays of double-walled TiO2 nanotubes with temperature controlled inner diameterPHYSICA STATUS SOLIDI - RAPID RESEARCH LETTERS, Issue 5-6 2010Mihai Enachi Abstract It is proposed to use the variation of the electrolyte temperature to fabricate titania nanotubes with variable inner diameter at a constant outer diameter and an invariable package density. The anodization of Ti sheets in an ethylene glycol and HF containing electrolyte is found to allow the preparation of nanotubes with the inner diameter controlled in the range from 10 nm to more than 250 nm through the change of the electrolyte temperature from ,20 °C to +50 °C. The peculiarities of the anodization process performed at low electrolyte temperatures are discussed. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Assessment of acetone as an alternative to acetonitrile in peptide analysis by liquid chromatography/mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2009Ria Fritz Acetonitrile as a solvent used in liquid chromatography/mass spectrometry (LC/MS) of peptides and proteins is a relatively toxic solvent (LD50 oral; rat; 2,460,mg/kg) compared to alternatives like methanol (LD50 oral; rat; 5,628,mg/kg) and acetone (LD50 oral; rat; 5,800,mg/kg). Strategies to minimize its consumption in LC are either to reduce the inner diameter of the column or replace acetonitrile with a suitable alternative. Methanol is often recommended to replace acetonitrile in peptide analysis. In this study however, the main focus lies on another alternative solvent for LC/MS of peptides; acetone. A number of model proteins were tryptically digested and the peptide solutions were analyzed on a linear trap quadrupole (LTQ) mass spectrometer. The performances of acetonitrile, methanol and acetone were compared according to the quality of the chromatograms obtained and identification of the peptides using the BioWorksÔ software developed by Thermo Scientific. In accordance to the elutropic series, acetone was found to significantly reduce the retention times of peptides separated by C18 column material with regard to acetonitrile while methanol led to increased retention times. Acetone was the superior solvent to methanol for most of the tested model proteins reaching similar sequence coverage and numbers of identified peptides as acetonitrile. We therefore propose acetone as an alternative to acetonitrile in LC/MS of peptides. Copyright © 2009 John Wiley & Sons, Ltd. [source] Micro-electrospray with stainless steel emittersRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2003Wenqing Shui The physical processes underlying micro-electrospray (micro-ES) performance were investigated using a stainless steel (SS) emitter with a blunt tip. Sheathless micro-ES could be generated at a blunt SS tip without any tapering or sanding if ESI conditions were optimized. The Taylor cone was found to shrink around the inner diameter of the SS tubing, which permitted a low flow rate of 150,nL/min for sheathless microspray on the blunt tip (100,,m i.d.,×,400,,m o.d.). It is believed that the wettability and/or hydrophobicity of SS tips are responsible for their micro-ES performance. The outlet orifice was further nipped to reduce the size of the spray cone and limit the flow rate to 50,150,nL/min, resulting in peptide detection down to attomole quantities consumed per spectrum. The SS emitter was also integrated into a polymethylmethacrylate microchip and demonstrated satisfactory performance in the analysis and identification of a myoglobin digest. Copyright © 2003 John Wiley & Sons, Ltd. [source] A novel nanoflow interface for atmospheric pressure ionization mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2003Atsumu HirabayashiArticle first published online: 23 JAN 200 A novel spray-ionization technique for nanoflow liquid chromatography/mass spectrometry (nLC/MS) has been developed by modifying the sonic spray ionization (SSI) technique. A solution from a tapered fused-silica capillary is sprayed by a gas flow coaxial to the capillary, and ions produced are analyzed with an ion-trap mass spectrometer. The ion intensity is shown to have a steep threshold at a low gas velocity and to be much less dependent on the gas velocity than that of conventional SSI, in which the ion intensity is strongly dependent on the gas velocity and reaches its maximum at sonic velocity. Thus, we conclude that the concentration of charge in the solution at the tapered capillary tip with an inner diameter of 15,,m is almost at saturation so that charged droplets are produced from the solution by electrical force, rather than by sheer stress due to the gas flow. The ions are readily produced from these charged droplets. Preliminary results are compared with results obtained with a miniaturized electrospray unit. Copyright © 2003 John Wiley & Sons, Ltd. [source] Ovum Pick-up in Sheep: a Comparison between Different Aspiration Devices for Optimal Oocyte RetrievalREPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2006C Rodríguez Contents In vivo ovum pick-up (OPU) in sheep may be improved with a proper choice of aspiration elements (needle and tubing) and aspiration vacuum pressure. In the present study, two experiments were carried out. In Expt 1, visible follicles in ovaries of slaughtered ewes (treated separately according to their diameters: small <3 mm, medium 3,5 mm and large >5 mm) were aspirated using different combinations of the three studied factors such as aspiration flow rate (10, 20, 30, 40 and 50 ml water/min), needle gauge (18 and 20 G) and tubing inner diameter (1, 2 or 3 mm internal diameter). In Expt 2, a study with two 18 G needles of different lengths (18 G: 82 mm; 18 GL: 600 mm) was carried out, using ovaries obtained post-mortem, and performing in vivo laparoscopic follicular aspiration on ewes. We considered good quality oocytes as those with both complete compact cumulus and a homogeneous cytoplasm. Recovery rate, proportion of good quality oocytes (good quality oocytes/100 oocytes recovered) and overall efficiency (good quality oocytes/100 follicles aspirated) were noted. In Expt 1, aspiration flow rate affect remarkable proportion of good quality oocytes (69.5%, 50.5%, 44.8%, 36.5% and 28.3% for flows from 10 to 50 ml/min respectively, p < 0.05). Needle gauge did not affect aspiration device efficiency. Thin and intermediate tubings were more effective (overall efficiency rates: 34.9%, 32.3% and 28.1% for 1, 2 and 3 mm respectively, p < 0.05). Follicle size did not affect recovery rate, but proportion of good quality oocytes was higher for large (77.9%) and medium (64.4%) follicles (p < 0.05). Finally, some combinations of the aspiration device showed greater effectiveness. In Expt 2, needle length did not influence recovery rate, but good quality oocytes rate was significantly modified both post-mortem and in vivo (good quality rate for 18 G vs 18 GL needles: 69.5% vs 47.7% and 58.1% vs 25.4%, post-mortem and in vivo respectively, p < 0.05). We conclude that low-aspiration flow rates (10 and 20 ml/min) with thin or intermediate tubings (1 and 2 mm), and any short needle (18 G or 20 G) are the most adequate aspiration factors for OPU in sheep. [source] A Thin Tracheal Silicone Washer to Solve Periprosthetic Leakage in Laryngectomies: Direct Results and Long-Term Clinical Effects,THE LARYNGOSCOPE, Issue 4 2008Frans J. M. Hilgers MD Abstract Objectives: Assessment of the immediate results and long-term clinical effects of a thin silicone washer placed behind the tracheal flange of voice prostheses to treat periprosthetic leakage. Patients and Methods: Three year retrospective analysis of 32 laryngectomized patients with 107 periprosthetic leakage events (PLEs). Custom-made silicone washers (outer diameter 18 mm, inner diameter 7.5 mm, thickness 0.5 mm) were placed behind the tracheal flange either in combination with prosthesis replacement or later. Results: There was immediate resolution of periprosthetic leakage in 88 PLEs (median, 38 d; mean, 53 d; range, 8,330 d) and in 6 PLEs with the washer still in situ at the date of analysis (median, 75; mean, 97 d; range, 38,240 d). There was no resolution for periprosthetic leakage in 13 PLEs. Thus, in total, 94 of 107 PLEs (88%) were successfully resolved. In 29 of 32 (91%) patients, the washer resolved the problem at least in one PLE successfully. Twelve of 32 patients, including all 3 with washer failures, also required other interventions to ultimately solve the problem. The vast majority of patients (80%) did not consider placement of the washer to be inconvenient. Conclusions: In consideration of the high success rate and limited inconvenience for patients, this simple thin silicon washer application provides a good first option for the treatment of periprosthetic leakage. [source] Strain Hardening of Red Blood Cells by Accumulated Cyclic Supraphysiological StressARTIFICIAL ORGANS, Issue 1 2007Sung S. Lee Abstract:, The effect of elevated shear stress upon cellular trauma has been studied for many years, but the effect of long-term cyclic stress trauma on hemorheology has never been explored systematically. This study investigated sublytic trauma of red blood cells (RBCs) caused by repeated exposure to shear stress. A suspension of bovine blood was throttled through a capillary tube (inner diameter 1 mm and length 70 mm) connected to a recirculating flow loop. Samples were withdrawn every 30 min to measure deformability and characteristic time. The deformability of the cell was measured microscopically by observing the shape of the cell during the shear flow. It was found that cyclic shear irreversibly stiffened the cell membrane while the effect was not so much as that of continuous shear. The cell deformability was dramatically reduced by 73% when the stress of 300 Pa was applied for 288 s, while it was 7% under 90 Pa. These results elucidate the need for improved models to predict cellular trauma within the unsteady flow environment of mechanical circulatory assist devices. [source] The capillary electrophoresis separation of benzodiazepine drug using dextran sulfate and SDS as running bufferBIOMEDICAL CHROMATOGRAPHY, Issue 3 2004Yoshio Suzuki Abstract Capillary electrophoresis has been applied the analyses of many clinical drugs due to its rapid, high-resolution separation. In this study, electrokinetic chromatography involving the combination of SDS and dextran sulfate, which are synthetic polymers, was examined in order to obtain high resolution. Use of 2% dextran sulfate (10,000 molecular weight), 20 mm SDS running buffer containing boric acid solution (pH 9.2) and a silica capillary (inner diameter of 75 µm, effective length of 50 cm, 57 cm overall length) afforded separation of 10 kinds of benzodiazepines. The detection limit was 0.2 µg/mL; additionally, reproducibilities were de,ned as the peak height and migration time. The average peak height was 5.92% (2.46,17.61), whereas the average migration time was 0.44% (0.18,0.76; n = 5). This separations system can be applied to the analysis and measurement of other pharmaceuticals as well. Copyright © 2004 John Wiley & Sons, Ltd. [source] The benefit of the retrofitting of a conventional LC system to micro LC: a practical evaluation in the field of bioanalysis with fluorimetric detectionBIOMEDICAL CHROMATOGRAPHY, Issue 5 2003S. Roy Abstract The interests in liquid micro-chromatography (higher column efficiencies, increase in sensitivity) are now well established. The enhancement of fluorimetric response induced by the reduction of the inner diameter of columns (4.6, 3.0, 1.0 and 0.3,mm respectively) coupled with adapted detection cells to control the loss of efficiency (8,µL for the two first columns and 100,nL for the two smaller ones) has been studied in the bioanalytical field, using the plasma determination of native fluorescent antibacterial agents: fluoroquinolones. Ten-fold enhancement of the signal can easily be obtained when substituting a 0.3,mm i.d. column and 100,nL detection cell for a 4.6,mm i.d. column, and 8,µL detection cell. In addition to inner diameter reduction, the detection cell geometry appears to be an essential parameter to obtain the best enhancement of the recorded signal. Hence, the enhancement of signal with micro-chromatography with fluorimetric detection appears to be a compromise between column inner diameter and flow cell volume reduction. Copyright © 2003 John Wiley & Sons, Ltd. [source] A biomimetic tubular scaffold with spatially designed nanofibers of protein/PDS® bio-blends,BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009Vinoy Thomas Abstract Electrospun tubular conduit (4,mm inner diameter) based on blends of polydioxanone (PDS II®) and proteins such as gelatin and elastin having a spatially designed trilayer structure was prepared for arterial scaffolds. SEM analysis of scaffolds showed random nanofibrous morphology and well-interconnected pore network. Due to protein blending, the fiber diameter was reduced from 800,950,nm range to 300,500,nm range. Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) results confirmed the blended composition and crystallinity of fibers. Pure PDS scaffold under hydrated state exhibited a tensile strength of 5.61,±,0.42,MPa and a modulus of 17.11,±,1.13,MPa with a failure strain of 216.7,±,13%. The blending of PDS with elastin and gelatin has decreased the tensile properties. A trilayer tubular scaffold was fabricated by sequential electrospinning of blends of elastin/gelatin, PDS/elastin/gelatin, and PDS/gelatin (EG/PEG/PG) to mimic the complex matrix structure of native arteries. Under hydrated state, the trilayer conduit exhibited tensile properties (tensile strength of 1.77,±,0.2,MPa and elastic modulus of 5.74,±,3,MPa with a failure strain of 75.08,±,10%) comparable to those of native arteries. In vitro degradation studies for up to 30 days showed about 40% mass loss and increase in crystallinity due to the removal of proteins and "cleavage-induced crystallization" of PDS. Biotechnol. Bioeng. 2009; 104: 1025,1033. © 2009 Wiley Periodicals, Inc. [source] Crystallization and preliminary crystallographic studies of the recombinant dihydropyrimidinase from Sinorhizobium meliloti CECT4114ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 12 2006Sergio Martínez-Rodríguez Dihydropyrimidinases are involved in the reductive pathway of pyrimidine degradation, catalysing the hydrolysis of 5,6-dihydrouracil and 5,6-dihydrothymine to the corresponding N -carbamoyl ,-amino acids. This enzyme has often been referred to as hydantoinase owing to its industrial application in the production of optically pure amino acids starting from racemic mixtures of 5-monosubstituted hydantoins. Recombinant dihydropyrimidinase from Sinorhizobium meliloti CECT4114 (SmelDhp) has been expressed, purified and crystallized. Crystallization was performed using the counter-diffusion method with capillaries of 0.3,mm inner diameter. Crystals of SmelDhp suitable for data collection and structure determination were grown in the presence of agarose at 0.1%(w/v) in order to ensure mass transport controlled by diffusion. X-ray data were collected to a resolution of 1.85,Ĺ. The crystal belongs to the orthorhombic space group C2221, with unit-cell parameters a = 124.89, b = 126.28, c = 196.10,Ĺ and two molecules in the asymmetric unit. A molecular-replacement solution has been determined and refinement is in progress. [source] Double Wall Carbon Nanotubes with an Inner Diameter of 0.4 nmCHEMICAL VAPOR DEPOSITION, Issue 3 2003L. Ci Selective preparation of double wall carbon nanotubes (DWCNTs) is achieved by a floating iron catalyst CVD method with sufur promotion. SEM shows that the product consists of entangled nanotubes. HRTEM and Raman scattering have revealed that the smallest inner diameter of as-grown carbon nanotubes is 0.4 nm (see Figure). The smallest diameter is found to be produced at the low carbon partial pressure with low sulfur content. [source] High-efficiency peptide analysis on monolithic multimode capillary columns: Pressure-assisted capillary electrochromatography/capillary electrophoresis coupled to UV and electrospray ionization-mass spectrometryELECTROPHORESIS, Issue 21 2003Alexander R. Ivanov Abstract High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 ,m inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n -propanol and formamide as porogens and azobisisobutyronitrile as initiator. N -Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300,000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method. [source] Hydrothermal Synthesis of Rare Earth (Tb, Y) Hydroxide and Oxide Nanotubes,ADVANCED FUNCTIONAL MATERIALS, Issue 12 2003Y.-P. Fang Abstract In this paper, Tb(OH)3 and Y(OH)3 single-crystalline nanotubes with outer diameters of 30,260,nm, inner diameters of 15,120,nm, and lengths of up to several micrometers were synthesized on a large scale by hydrothermal treatment of the corresponding oxides in the presence of alkali. In addition, Tb4O7 and Y2O3 nanotubes can be obtained by calcination of Tb(OH)3 and Y(OH)3 nanotubes at 450,°C. X-ray diffraction (XRD), field-emission scanning electron microscopy, transmission electron microscopy (TEM), electron diffraction (ED), energy-dispersive X-ray spectroscopy (EDS), thermogravimetry, and differential scanning calorimetry (DSC) have been employed to characterize these nanotube materials. The growth mechanism of rare earth hydroxide nanotubes can be explained well by the highly anisotropic crystal structure of rare earth hydroxides. These new types of rare earth compound nanotubes with open ends have uses in a variety of promising applications such as luminescent devices, magnets, catalysts, and other functional materials. Advantages of this method for easily realizing large-scale production include that it is a simple and unique one-pot synthetic process without the need for a catalysts or template, is low cost, has high yield, and the raw materials are readily available. The present study has enlarged the family of nanotubes available, and offers a possible new, general route to one-dimensional single-crystalline nanotubes of other materials. [source] |