Home About us Contact | |||
Inner Cortex (inner + cortex)
Selected AbstractsThe development and endophytic nature of the fungus Heteroconium chaetospiraFEMS MICROBIOLOGY LETTERS, Issue 2 2005Teruyoshi Hashiba Abstract The root endophytic fungus Heteroconium chaetospira was isolated from roots of Chinese cabbage grown in field soil in Japan. This fungus penetrates through the outer epidermal cells of its host, passes into the inner cortex, and grows throughout the cortical cells, including those of the root tip region, without causing apparent pathogenic symptoms. There are no ultrastructural signs of host resistance responses. H. chaetospira has been recovered from 19 plant species in which there was no disruption of host growth. H. chaetospira has a symbiotic association with Chinese cabbage. The fungus provides nitrogen in exchange for carbon. These associations are beneficial for the inoculated plants, as demonstrated by increased growth rate. When used as a preinoculum, H. chaetospira suppresses the incidence of clubroot and Verticillium yellows when the test plant is post-inoculated with the causal agents of these diseases. H. chaetospira is an effective biocontrol agent against clubroot in Chinese cabbage at a low to moderate soil moisture range and a pathogen resting spore density of 105 resting spores per gram of soil in situ. Disease caused by Pseudomonas syringae pv. macricola and Alternaria brassicae on leaves can be suppressed by treatment with H. chaetospira. The fungus persists in the roots and induces systemic resistance to the foliar disease. [source] Reactive oxygen species and antioxidants in legume nodulesPHYSIOLOGIA PLANTARUM, Issue 4 2000Manuel Becana Reactive oxygen species are a ubiquitous danger for aerobic organisms. This risk is especially elevated in legume root nodules due to the strongly reducing conditions, the high rates of respiration, the tendency of leghemoglobin to autoxidize, the abundance of nonprotein Fe and the presence of several redox proteins that leak electrons to O2. Consequently, nodules are particularly rich in both quantity and diversity of antioxidant defenses. These include enzymes such as superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.11) and metabolites such as ascorbate and thiol tripeptides. Nodule antioxidants have been the subject of intensive molecular, biochemical and functional studies that are reviewed here. The emerging theme is that antioxidants are especially critical for the protection and optimal functioning of N2 fixation. We hypothesize that this protection occurs at least at two levels: the O2 diffusion barrier in the nodule parenchyma (inner cortex) and the infected cells in the central zone. [source] Freeze avoidance: a dehydrating moss gathers no icePLANT CELL & ENVIRONMENT, Issue 10 2010THOMAS LENNÉ ABSTRACT Using cryo-SEM with EDX fundamental structural and mechanical properties of the moss Ceratodon purpureus (Hedw.) Brid. were studied in relation to tolerance of freezing temperatures. In contrast to more complex plants, no ice accumulated within the moss during the freezing event. External ice induced desiccation with the response being a function of cell type; water-filled hydroid cells cavitated and were embolized at ,4 °C while parenchyma cells of the inner cortex exhibited cytorrhysis, decreasing to ,20% of their original volume at a nadir temperature of ,20 °C. Chlorophyll fluorescence showed that these winter acclimated mosses displayed no evidence of damage after thawing from ,20 °C while GCMS showed that sugar concentrations were not sufficient to confer this level of freezing tolerance. In addition, differential scanning calorimetry showed internal ice nucleation occurred in hydrated moss at ,,12 °C while desiccated moss showed no evidence of freezing with lowering of nadir temperature to ,20 °C. Therefore the rapid dehydration of the moss provides an elegantly simple solution to the problem of freezing; remove that which freezes. [source] Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize rootsPLANT CELL & ENVIRONMENT, Issue 7 2006D. L. JONES ABSTRACT Aluminium (Al) toxicity associated with acid soils represents one of the biggest limitations to crop production worldwide. Although Al specifically inhibits the elongation of root cells, the exact mechanism by which this growth reduction occurs remains controversial. The aim of this study was to investigate the spatial and temporal dynamics of Al migration into roots of maize (Zea mays L.) and the production of the stress response compound callose. Using the Al-specific fluorescent probe morin, we demonstrate the gradual penetration of Al into roots. Al readily accumulates in the root's epidermal and outer cortical cell layers but does not readily penetrate into the inner cortex. After prolonged exposure times (12,24 h), Al had entered all areas of the root apex. The spatial and temporal accumulation of Al within the root is similarly matched by the production of the cell wall polymer callose, which is also highly localized to the epidermis and outer cortical region. Exposure to Al induced the rapid production of reactive oxygen species and induced a significant rigidification of the cell wall. Our results suggest that Al-induced root inhibition in maize occurs by rigidification of the epidermal layers. [source] |