Inland Waters (inland + water)

Distribution by Scientific Domains


Selected Abstracts


Conservation of the Biodiversity of Brazil's Inland Waters

CONSERVATION BIOLOGY, Issue 3 2005
ANGELO A. AGOSTINHO
Threatened freshwater species include 44 species of invertebrates (mostly Porifera) and 134 fishes (mostly Cyprinodontiformes, Rivulidae), primarily distributed in south and southeastern Brazil. Reasons for the declines in biodiversity in Brazilian inland waters include pollution and eutrophication, siltation, impoundments and flood control, fisheries, and species introductions. These problems are more conspicuous in the more-developed regions. The majority of protected areas in Brazil have been created for terrestrial fauna and flora, but they also protect significant water bodies and wetlands. As a result, although very poorly documented, these areas are of great importance for aquatic species. A major and pressing challenge is the assessment of the freshwater biodiversity in protected areas and surveys to better understand the diversity and geography of freshwater species in Brazil. The concept of umbrella species (e.g., certain migratory fishes) would be beneficial for the protection of aquatic biodiversity and habitats. The conservation and improved management of river corridors and associated floodplains and the maintenance of their hydrological integrity is fundamental to preserving Brazil's freshwater biodiversity and the health of its aquatic resources. Resumen:,En términos de biodiversidad, las aguas interiores de Brasil son de enorme importancia global para Algae (25% de las especies del mundo), Porifera (Demospongiae, 33%), Rotifera (25%), Cladocera (Branchiopoda, 20%) y peces (21%). Las especies dulceacuícolas amenazadas incluyen a 44 especies de invertebrados (la mayoría Porifera) y 134 de peces (en su mayor parte Cyprinodontiformes, Rivulidae), distribuidos principalmente en el sur y sureste de Brasil. Las razones de la declinación en la biodiversidad de aguas interiores de Brasil incluyen contaminación y eutrofización, sedimentación, represas y control de inundaciones, pesquerías e introducción de especies. Estos problemas son más conspicuos en las regiones más desarrolladas. La mayoría de las áreas protegidas en Brasil han sido creadas para fauna y flora terrestres, pero también protegen a considerable número de cuerpos de agua y humedales y, aunque muy deficientemente documentado, como tales son de gran importancia para las especies acuáticas. La evaluación de la biodiversidad dulceacuícola en áreas protegidas y muestreos para un mejor entendimiento de la diversidad y geografía de especies dulceacuícolas de Brasil son un reto mayor y apremiante. El concepto de especies sombrilla (e.g., ciertos peces migratorios) sería benéfico para la protección de biodiversidad y hábitats acuáticos. La conservación y perfeccionamiento de la gestión de corredores fluviales y las llanuras de inundación asociadas y el mantenimiento de su integridad hidrológica son fundamentales para preservar la biodiversidad dulceacuícola de Brasil y la salud de sus recursos acuáticos. [source]


Do we need land-cover data to model species distributions in Europe?

JOURNAL OF BIOGEOGRAPHY, Issue 3 2004
Wilfried Thuiller
Abstract Aim, To assess the influence of land cover and climate on species distributions across Europe. To quantify the importance of land cover to describe and predict species distributions after using climate as the main driver. Location, The study area is Europe. Methods, (1) A multivariate analysis was applied to describe land-cover distribution across Europe and assess if the land cover is determined by climate at large spatial scales. (2) To evaluate the importance of land cover to predict species distributions, we implemented a spatially explicit iterative procedure to predict species distributions of plants (2603 species), mammals (186 species), breeding birds (440 species), amphibian and reptiles (143 species). First, we ran bioclimatic models using stepwise generalized additive models using bioclimatic variables. Secondly, we carried out a regression of land cover (LC) variables against residuals from the bioclimatic models to select the most relevant LC variables. Finally, we produced mixed models including climatic variables and those LC variables selected as decreasing the residual of bioclimatic models. Then we compared the explanatory and predictive power of the pure bioclimatic against the mixed model. Results, (1) At the European coarse resolution, land cover is mainly driven by climate. Two bioclimatic axes representing a gradient of temperature and a gradient of precipitation explained most variation of land-cover distribution. (2) The inclusion of land cover improved significantly the explanatory power of bioclimatic models and the most relevant variables across groups were those not explained or poorly explained by climate. However, the predictive power of bioclimatic model was not improved by the inclusion of LC variables in the iterative model selection process. Main conclusion, Climate is the major driver of both species and land-cover distributions over Europe. Yet, LC variables that are not explained or weakly associated with climate (inland water, sea or arable land) are interesting to describe particular mammal, bird and tree distributions. However, the addition of LC variables to pure bioclimatic models does not improve their predictive accuracy. [source]


Conservation of the Biodiversity of Brazil's Inland Waters

CONSERVATION BIOLOGY, Issue 3 2005
ANGELO A. AGOSTINHO
Threatened freshwater species include 44 species of invertebrates (mostly Porifera) and 134 fishes (mostly Cyprinodontiformes, Rivulidae), primarily distributed in south and southeastern Brazil. Reasons for the declines in biodiversity in Brazilian inland waters include pollution and eutrophication, siltation, impoundments and flood control, fisheries, and species introductions. These problems are more conspicuous in the more-developed regions. The majority of protected areas in Brazil have been created for terrestrial fauna and flora, but they also protect significant water bodies and wetlands. As a result, although very poorly documented, these areas are of great importance for aquatic species. A major and pressing challenge is the assessment of the freshwater biodiversity in protected areas and surveys to better understand the diversity and geography of freshwater species in Brazil. The concept of umbrella species (e.g., certain migratory fishes) would be beneficial for the protection of aquatic biodiversity and habitats. The conservation and improved management of river corridors and associated floodplains and the maintenance of their hydrological integrity is fundamental to preserving Brazil's freshwater biodiversity and the health of its aquatic resources. Resumen:,En términos de biodiversidad, las aguas interiores de Brasil son de enorme importancia global para Algae (25% de las especies del mundo), Porifera (Demospongiae, 33%), Rotifera (25%), Cladocera (Branchiopoda, 20%) y peces (21%). Las especies dulceacuícolas amenazadas incluyen a 44 especies de invertebrados (la mayoría Porifera) y 134 de peces (en su mayor parte Cyprinodontiformes, Rivulidae), distribuidos principalmente en el sur y sureste de Brasil. Las razones de la declinación en la biodiversidad de aguas interiores de Brasil incluyen contaminación y eutrofización, sedimentación, represas y control de inundaciones, pesquerías e introducción de especies. Estos problemas son más conspicuos en las regiones más desarrolladas. La mayoría de las áreas protegidas en Brasil han sido creadas para fauna y flora terrestres, pero también protegen a considerable número de cuerpos de agua y humedales y, aunque muy deficientemente documentado, como tales son de gran importancia para las especies acuáticas. La evaluación de la biodiversidad dulceacuícola en áreas protegidas y muestreos para un mejor entendimiento de la diversidad y geografía de especies dulceacuícolas de Brasil son un reto mayor y apremiante. El concepto de especies sombrilla (e.g., ciertos peces migratorios) sería benéfico para la protección de biodiversidad y hábitats acuáticos. La conservación y perfeccionamiento de la gestión de corredores fluviales y las llanuras de inundación asociadas y el mantenimiento de su integridad hidrológica son fundamentales para preservar la biodiversidad dulceacuícola de Brasil y la salud de sus recursos acuáticos. [source]


Tracing recent invasions of the Ponto-Caspian mysid shrimp Hemimysis anomala across Europe and to North America with mitochondrial DNA

DIVERSITY AND DISTRIBUTIONS, Issue 2 2008
Asta Audzijonyte
ABSTRACT The mysid crustacean Hemimysis anomala (,bloody-red shrimp') is one of the most recent participants in the invasion of European inland waters by Ponto-Caspian species. Recently the species also became established in England and the Laurentian Great Lakes of North America. Using information from mitochondrial cytochrome oxidase I (COI) gene sequences, we traced the invasion pathways of H. anomala; the inferences were enabled by the observed phylogeographical subdivision among the source area populations in the estuaries of the Ponto-Caspian basin. The data distinguish two routes to northern and western Europe used by distinct lineages. One route has been to and through the Baltic Sea and further to the Rhine delta, probably from a population intentionally introduced to a Lithuanian water reservoir from the lower Dnieper River (NW Black Sea area) in 1960. The other lineage is derived from the Danube delta and has spread across the continent up the Danube River and further through the Main,Danube canal down to the Rhine River delta. Only the Danube lineage was found in England and in North America. The two lineages appear to have met secondarily and are now found intermixed at several sites in NW Europe, including the Rhine and waters linked with the man-made Mittellandkanal that interconnects the Rhine and Baltic drainage systems. [source]


Inventory of shipping emissions in Izmit Gulf, Turkey

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 2 2010
Alper Kiliç
Abstract Ships are significant emissions sources in transportation sector. The environmental effects of shipping emissions become more serious because of insufficient international rules and inspections. Especially in inland waters, canals, straits, gulfs, and port areas emissions effects on environment and health are more important. Izmit Gulf is the major industrial, transport, and inland water region which is affected from shipping emissions with 37 ports and industrial plants. In this study, NOx, SO2, CO2, HC, and PM emission amounts from 11,645 ships called to Izmit Gulf in 2005. These emissions are classified according to ships operation modes and ship types. Annual shipping emissions are estimated as 5,356 t yr,1 for NOx, 4,305 t yr,1 for SO2, 254,261 t yr,1 for CO2, 232 t yr,1 for HC and 487 t yr,1 for PM. To determine the most probably effected regions in the gulf, the spatial distribution of NOx emissions within the Gulf region has been prepared in 1 × 1 Nm2 (Nautical miles) grid cells based on ship movement data along the various routes. Ships in Izmit Gulf contribute to urban pollution with sulfur dioxide significantly. © 2009 American Institute of Chemical Engineers Environ Prog, 2010 [source]


Reconciling traditional inland fisheries management and sustainability in industrialized countries, with emphasis on Europe

FISH AND FISHERIES, Issue 4 2002
Robert Arlinghaus
Abstract In northern industrialized countries, the inland fisheries sector has long been dominated by recreational fisheries, which normally exploit fish for leisure or subsistence and provide many (poorly investigated) benefits to society. Various factors constrain the development and existence of inland fisheries, such as local user conflicts, low social priority and inadequate research and funding. In many cases, however, degradation of the environment and loss of aquatic habitat are the predominant concerns for the sustainability of inland fisheries. The need for concerted effort to prevent and reduce environmental degradation, as well as conservation of freshwater fish and fisheries as renewable common pool resources or entities in their own right is the greatest challenge facing sustainable development of inland waters. In inland fisheries management, the declining quality of the aquatic environment coupled with long-term inadequate and often inappropriate fisheries management has led to an emphasis on enhancement practices, such as stocking, to mitigate anthropogenic stress. However, this is not always the most appropriate management approach. Therefore, there is an urgent need to alter many traditional inland fisheries management practices and systems to focus on sustainable development. This paper reviews the literature regarding the inputs needed for sustainability of inland fisheries in industrialized countries. To understand better the problems facing sustainable inland fisheries management, the inland fisheries environment, its benefits, negative impacts and constraints, as well as historical management, paradigms, trends and current practices are described. Major philosophical shifts, challenges and promising integrated management approaches are envisaged in a holistic framework. The following are considered key elements for sustainable development of inland fisheries: communication, information dissemination, education, institutional restructuring, marketing outreach, management plans, decision analysis, socioeconomic evaluation and research into the human dimension, in addition to traditional biological and ecological sciences. If these inputs are integrated with traditional fisheries management practices, the prospects for sustainability in the inland fisheries will be enhanced. [source]


Gillnet fishing drives lake-migrating brown trout to near extinction in the Lake Päijänne region, Finland

FISHERIES MANAGEMENT & ECOLOGY, Issue 2 2010
J. SYRJÄNEN
Abstract, Wild stocks of brown trout, Salmo trutta L., collapsed in Finnish inland waters during the 20th Century because dams prevented upstream migration, and low water quality and stream dredging weakened reproduction. The demise in migratory stocks was coupled with overfishing, mainly by gillnetting on lakes. Consequently, the migratory spawning stocks have diminished to negligible levels. The remaining stocks exhibit restricted immigration and emigration, are supplemented by continuous stocking, and their natural genetic diversity is affected by human activities. In recent years, various recovery actions have been implemented including stream channel restorations, fish passage facilities constructed and stocking of eggs and smolts. Gillnetting has also been regulated by banning certain mesh sizes, and catch-and-release of wild trout is spreading amongst sport fishers. However, these measures seem to be inadequate and almost no recovery of migratory populations has been reported. The problem of by-catch in intensive gillnetting continues to threaten stocks and creates disputes between stakeholders. [source]


Present status, and social and economic significance of inland fisheries in Germany

FISHERIES MANAGEMENT & ECOLOGY, Issue 4-5 2001
H. Wedekind
The Federal Republic of Germany is situated in the central part of Europe and covers an area of 358 000 km2. The climate is maritime in the north and continental in the south with precipitation varying between 600 and 2000 mm year,1. Lakes and farm ponds are common in the north-eastern part of the country and in the alpine and pre-alpine regions to the south. A great number of small natural and artificial water bodies exist all over the country. There are about 800 000 ha of inland waters. The population of 82 million people are concentrated around a number of large conurbations. Over the last 150 years, intense use of the water resources by industry led to pollution and a severe decrease in river and lake fisheries. Only 587 inland fishing enterprises still existed in the early 1990s. Catches from commercial fisheries are decreasing with a total of 3469 t being caught in 1998. The Lake Constance fishery, which landed about 840 t in 1998, is an exception to the general trend. Strong competition for the aquatic resource is affecting commercial fisheries, whilst recreational fisheries have gained increasing importance over the last decades. Recent studies provided basic information on anglers' habits, social structure and economic significance as well as their effects on the waters. Aquaculture mainly produces rainbow trout, Oncoryhnchus mykiss (Walbaum) 20 000 t and carps (12 000 t) e.g. Cyprinus carpio L. Despite pressures from industry and conservation movements, regional support for fisheries and their development has intensified, leading to improved water quality. There are even attempts to re-establish abandoned fisheries. Co-operation with conservationists provides an opportunity for the future survival and development of fisheries. The fisheries and aquaculture sectors changed drastically after the reunification of Germany. The collapse of the infrastructure in the eastern part of Germany led to a decline in production and to a special investigation on recent developments of this sector. [source]


Effects of an exotic invasive macrophyte (tropical signalgrass) on native plant community composition, species richness and functional diversity

FRESHWATER BIOLOGY, Issue 6 2010
THAÍSA SALA MICHELAN
Summary 1.,The issue of freshwater species being threatened by invasion has become central in conservation biology because inland waters exhibit the highest species richness per unit area, but apparently have the highest extinctions rates on the planet. 2.,In this article, we evaluated the effects of an exotic, invasive aquatic grass (Urochloa subquadripara, tropical signalgrass) on the diversity and assemblage composition of native macrophytes in four Neotropical water bodies (two reservoirs and two lakes). Species cover was assessed in quadrats, and plant biomass was measured in further quadrats, located in sites where tropical signalgrass dominated (D quadrats) and sites where it was not dominant or entirely absent (ND quadrats). The effects of tropical signalgrass on macrophyte species richness, Shannon diversity and number of macrophyte life forms (a surrogate of functional richness) were assessed through regressions, and composition was assessed with a DCA. The effects of tropical signalgrass biomass on the likelihood of occurrence of specific macrophyte life forms were assessed through logistic regression. 3.,Tropical signalgrass had a negative effect on macrophyte richness and Shannon and functional diversity, and also influenced assemblage composition. Emergent, rooted with floating stems and rooted submersed species were negatively affected by tropical signalgrass, while the occurrence of free-floating species was positively affected. 4.,Our results suggest that competition with emergent species and reduction of underwater radiation, which reduces the number of submersed species, counteract facilitation of free-floating species, contributing to a decrease in plant diversity. In addition, homogenisation of plant assemblages shows that tropical signalgrass reduces the beta diversity in the macrophyte community. 5.,Although our results were obtained at fine spatial scales, they are cause for concern because macrophytes are an important part of freshwater diversity. [source]


Can taxonomic distinctness assess anthropogenic impacts in inland waters?

FRESHWATER BIOLOGY, Issue 9 2006
A case study from a Mediterranean river basin
Summary 1. It is increasingly recognised that adequate measures of biodiversity should include information on the ,relatedness' of species within ecological assemblages, or the phylogenetic levels at which diversity is expressed. Taxonomic distinctness measures provide a series of indices to achieve this, which are independent of sample size. Taxonomic distinctness has been employed widely in marine systems, where it has been suggested that this index can provide a reliable measure of anthropogenic impact. 2. We tested the behaviour of three related taxonomic distinctiveness indices (Average Taxonomic Distinctness, ,+; Variation in Taxonomic Distinctness, ,+; and Total Taxonomic Distinctness, s,+) in relation to putative levels of anthropogenic impact in inland waters and their potential utility in environmental monitoring, using an extensive data set for aquatic beetles from the south-east of the Iberian Peninsula. 3. Taxonomic distinctness measures were not able to identify human disturbance effects and there were no clear relationships between these new biodiversity measures and the disturbance level recorded at individual localities. Furthermore, the taxonomic distinctness measures used were apparently less sensitive to the effects of anthropogenic impact than other diversity metrics, such as species richness and rarity. 4. We conclude that taxonomic distinctness indices may not always perform as well as other metrics in the assessment of environmental quality. In addition, taxonomic distinctness measure should be interpreted with caution, as their performance and ability to detect anthropogenic disturbance may depend on the phylogenetic structure of sampled taxa within a region, and their evolutionary and ecological history. [source]


Anguillicoloides crassus infection of European eel, Anguilla anguilla (L.), in inland waters of Estonia: history of introduction, prevalence and intensity

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 2010
A. Kangur
Summary Eel fishery in Estonian inland waters depends entirely on the stocking of glass eels or pre-grown (farmed) eels. Via importation of live eels of 20,30 cm length the non-indigenous swimbladder nematode Anguillicoloides crassus was probably introduced via Germany into Lake Võrtsjärv in 1988, and has since spread to many inland waters of Estonia. In 1992, the parasite was found in eel caught from Lake Võrtsjärv. Between 1992 and 2002 and additionally in 2008, we examined in total 870 eels from Lake Võrtsjärv (270 km2) and in 2008, 63 eels from three small lakes for adult A. crassus. The aim of the study was to obtain information on the variation of A. crassus infection in eels in Estonian lakes, to determine the temporal dynamics of prevalence and intensity of infection, and to establish a relationship between the length of host and intensity of infection in the eels in Lake Võrtsjärv. There appeared to be a pronounced variation in prevalences of infected eels (from 3.7% to 100%) between the four investigated lakes. However, in Lake Võrtsjärv, the prevalence of adult A. crassus infection remained stable (mean about 65%) for many years. The average number of nematode per infected eel (mean intensity) ranged from 12.6 ± 2.5 in 1993 to 4.0 ± 0.6 in 1999 in Lake Võrtsjärv, while it was significantly higher (P < 0.0001) in the period 1992,1998 compared to 1999,2002 and 2008. The mean number of parasites per swimbladder was not related to eel length and no statistical difference was found in the condition factor of infected and non-infected eels. Although under normal environmental conditions A. crassus has not caused serious disease problems to eels in the study area, high intensity of parasite infection may contribute to eel kills due to oxygen deficiency in winter under the ice in Lake Võrtsjärv. [source]


Turbid flow through a tropical reservoir (Lake Dalrymple, Queensland, Australia): Responses to a summer storm event

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 4 2000
John W. Faithful
Abstract The first flood event following a prolonged dry period is described for an impoundment, Lake Dalrymple, in tropical north-eastern Australia. The event, in January 1996, generated substantial flow in the two main inflow sources: the Burdekin River from the north and the Suttor River from the south. Flow through the Burdekin River peaked early and then subsided to a lower level, but flow through the Suttor River persisted at a moderate level for over 15 days after the initial inflow. An extensive water quality survey was conducted on 16 January 1996 (seven days after the initial dam overflow) to determine the nature of the inflows originating from the two major subcatchments feeding the reservoir as they entered and passed through the impoundment. The inflow comprising waters of high turbidity and low conductivity occupied the mid-column region along the two major inflow channels through the impoundment to the dam wall. The suspended particulate material in the form of silt and clay sized particles remained in suspension as the flow passed through the reservoir, due in part to the low ionic strength of the inflow and the relative densities of the inflowing and receiving waters. For both river sources, more than 50% of the total nitrogen and almost all of the total phosphorus were bound to the suspended particulate matter. Much of this was exported in the flow over the spillway. The highly turbid nature of the inflow resulted in strong attenuation of down-welling photosynthetically active radiation (up to maximum attenuation values of 12.24 m,1 in the reservoir where the euphotic depth was only 0.38 m). The irradiance reflectance and the scattering coefficient were considerably higher than any reported for other Australian inland waters. Concentrations of viable chlorophyll a in the surface waters were very low (maximum value 3.4 ,g L,1) because of the highly turbid conditions and extensive dilution by the inflow. The results of this study provide an example of the significant impact a large inflow of turbid, low conductance water can have on a large reservoir in the arid tropics following a prolonged dry period. During inflow events such as the one described in this paper, the reservoir becomes riverine in nature, and large amounts of suspended particulate matter and associated nutrients are transported through the reservoir. [source]


Extensive cage culture of pejerrey (Odontesthes bonariensis) in a shallow pampean lake in Argentina

AQUACULTURE RESEARCH, Issue 10 2010
Darío César Colautti
Abstract Pejerrey is an important zooplanktivorous native fish of the Argentinean inland waters. It has been traditionally propagated for stocking purposes by relatively costly semi-intensive and intensive methods. In this study, we evaluated the implementation of an extensive culture method by using floating cages in a shallow pampean lake. Four cages were installed in the Lacombe Lake and stocked with juveniles (16.24 ± 1.69 mm length) at 50 fish m,3 density for growing until the size of 150 mm, which is considered as a suitable size for stocking. Throughout the experiment, the temperature ranged between 10 and 26 °C and the zooplankton biomass ranged between 12 and 3269 ,g dw L,1. The growth patterns in the length were similar in the four cages and directly related to the lake thermal conditions and zooplankton availability. The average final length after 315 days was 154.4 ± 8.8 mm. The survival rates ranged between 53.5% and 64.7% during the first 110 days and 11.1,25.7% at termination. Growth rate for the first 2 months was the highest documented for pejerrey culture. This simple technique offers the possibility to produce juvenile pejerrey at a low cost and provides the alternative of reinforcing the natural populations with fish already adapted to the natural environmental conditions. [source]


The demography of introduction pathways, propagule pressure and occurrences of non-native freshwater fish in England

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 5 2010
G. H. Copp
Abstract 1.Biological invasion theory predicts that the introduction and establishment of non-native species is positively correlated with propagule pressure. Releases of pet and aquarium fishes to inland waters has a long history; however, few studies have examined the demographic basis of their importation and incidence in the wild. 2.For the 1500 grid squares (10×10,km) that make up England, data on human demographics (population density, numbers of pet shops, garden centres and fish farms), the numbers of non-native freshwater fishes (from consented licences) imported in those grid squares (i.e. propagule pressure), and the reported incidences (in a national database) of non-native fishes in the wild were used to examine spatial relationships between the occurrence of non-native fishes and the demographic factors associated with propagule pressure, as well as to test whether the demographic factors are statistically reliable predictors of the incidence of non-native fishes, and as such surrogate estimators of propagule pressure. 3.Principal coordinates of neighbour matrices analyses, used to generate spatially explicit models, and confirmatory factor analysis revealed that spatial distributions of non-native species in England were significantly related to human population density, garden centre density and fish farm density. Human population density and the number of fish imports were identified as the best predictors of propagule pressure. 4.Human population density is an effective surrogate estimator of non-native fish propagule pressure and can be used to predict likely areas of non-native fish introductions. In conjunction with fish movements, where available, human population densities can be used to support biological invasion monitoring programmes across Europe (and perhaps globally) and to inform management decisions as regards the prioritization of areas for the control of non-native fish introductions. © Crown copyright 2010. Reproduced with the permission of her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd. [source]


Basking site and water depth selection by gharial Gavialis gangeticus Gmelin 1789 (Crocodylia, Reptilia) in National Chambal Sanctuary, India and its implication for river conservation

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 2 2009
Syed Ainul Hussain
Abstract 1.The species diversity of inland waters is among the most threatened of all ecosystems and in many parts of the world it is in continuing and accelerating decline. Such decline could be restrained by acknowledging the scope of target species, so that all relevant stages in their life cycle are considered. 2.The gharial Gavialis gangeticus is a prominent riverine species of the Indus, Ganges, Brahmaputra and Mahanadi river systems that is becoming increasingly rare due to reduction in water flow and available nesting beaches, modification of river morphology and increased mortality in fishing nets. Despite these threats, scientific information on habitat selection by gharial is still inadequate, which hinders conservation measures. 3.This paper presents the population status, basking site selection and water depth preferences of different size-classes of gharial based on a study conducted in the National Chambal Sanctuary, India. 4.Between 1992 and 2007 a 40% decline in the gharial population was observed in the National Chambal Sanctuary. The decline was prominent in the recruitment class (<120,cm), which primarily comes from the nests laid in the wild, and also in sub-adults (>180 to 270,cm) comprising both wild and reintroduced gharial. 5.Along the Chambal River, gharial preferred sandy parts of the river banks and sand bars for basking and showed less preference for rocky river banks and rocky outcrops. Clay river banks were least preferred. 6.Juvenile gharials <120,cm and 120,180,cm preferred water depths 1,3,m and 2,3,m, respectively. Gharial >180,cm (including sub-adults and adults) preferred water depths >4,m. 7.Increasing demands for sand for development activities, and water abstraction for irrigation and energy generation coupled with mortality in fishing nets, are likely to affect gharial and other aquatic species, and steps need to be taken to maintain the minimum river flow necessary to sustain ecosystem processes. Copyright © 2009 John Wiley & Sons, Ltd. [source]


The evolutionary ecology of detritus feeding in the larvae of freshwater Diptera

BIOLOGICAL REVIEWS, Issue 1 2009
Athol J. McLachlan
Abstract Detritus (dead organic matter), largely of terrestrial origin, is superabundant in inland waters but because of its indigestible nature, would appear to be a poor food source for animals. Yet this unpromising material is widely used as food and indeed can be viewed as a defining characteristic of the freshwater environment. We here explore the relationships among animals, detritus and its associated micro-organism decomposers, taking a functional approach. We pose questions about interrelationships and attempt to arrive at new insights by disentangling them from an adaptive point of view. To do this we have been careful in selecting the habitats for detailed consideration. Rain pools on rock surfaces in tropical Africa and pools on peat moorland in the UK were chosen. Both examples have a relatively simple community structure and hence offer the prospect of achieving our aim. As model organisms for study we focus principally on the aquatic stages of selected holometabolous insects; that is, selected genera of the universally common midges, Ceratopogonidae and Chironomidae. We approach these case studies from an evolutionary ecology perspective and see detritus as a simple template upon which a beautiful complex of adaptations can evolve. [source]