Injection Timing (injection + timing)

Distribution by Scientific Domains


Selected Abstracts


Premixed insulin treatment for type 2 diabetes: analogue or human?

DIABETES OBESITY & METABOLISM, Issue 5 2007
Alan J. Garber
The progressive nature of type 2 diabetes makes insulin initiation a necessary therapeutic step for many patients. Premixed insulin formulations containing both basal and prandial insulin (so called biphasic insulin) are often prescribed because they are superior to long- or intermediate-acting insulin in obtaining good metabolic control. In addition, they are considered as an attractive alternative to classical basal-bolus therapy as fewer daily injections are required. Premixed insulin formulations include conventional (e.g. biphasic human insulin 70/30, or 30/70 in European countries, BHI 30) and newer premixed human analogues (e.g. biphasic insulin aspart 70/30, or 30/70 in Europe, BIAsp 30; insulin lispro mix 75/25,Mix 75/25, or Mix 25/75 in Europe). Like conventional premixed human insulin, premixed insulin analogues contain a fixed proportion of soluble, rapid-acting insulin analogue, with protaminated analogue comprising the remainder. Unlike conventional premixes, analogue premixes have more physiological pharmacokinetic and therapeutically more desirable pharmacodynamic profiles than premixed human insulin. Consequently, postprandial glycaemic control is better with premixed insulin analogues than with premixed human insulin. In nontreat-to-target registration trials, the lowering of haemoglobin A1c with premixed insulin analogues was not inferior to that seen with premixed human insulin. Minor hypoglycaemia was similar for premixed analogue and premixed human insulins, while major hypoglycaemia appears to be rare with either formulation. The occurrence of adverse events, other than hypoglycaemia, was also similar between various premix insulins. The premixed insulin analogues, BIAsp 30 and Mix 75/25, like the fast-acting analogues from which they are derived, also allow flexible injection timing, relative to meal timing, thus improving adherence, compliance and quality of life compared with premixed human insulin. Overall, the evidence suggests that premixed insulin analogues are cost effective and have useful advantages over premixed human insulin for the treatment of type 2 diabetes. [source]


An experimental investigation on manifold-injected hydrogen as a dual fuel for diesel engine system with different injection duration

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2009
N. Saravanan
Abstract Stringent emission norms and rapid depletion of petroleum resources have resulted in a continuous effort to search for alternative fuels. Hydrogen is one of the best alternatives for conventional fuels. Hydrogen has both the benefits and limitation to be used as a fuel in an automotive engine system. In the present investigation, hydrogen was injected into the intake manifold by using a hydrogen gas injector and diesel was introduced in the conventional, mode which also acts as an ignition source for hydrogen combustion. The flow rate of hydrogen was set at 5.5,l,min,1 at all the load conditions. The injection timing was kept constant at top dead center (TDC) and injection duration was adjusted to find the optimized injection condition. Experiments were conducted on a single cylinder, four stroke, water-cooled, direct injection diesel engine coupled to an electrical generator. At 75% load the maximum brake thermal efficiency for hydrogen operation at injection timing of TDC and with injection duration of 30°CA is 25.66% compared with 21.59% for diesel. The oxides of nitrogen (NOX) emission are 21.7,g,kWh,1 for hydrogen compared with diesel of 17.9,g,k,Wh,1. Smoke emissions reduced to 1 Bosch smoke number (BSN) in hydrogen compared with diesel of 2.2 BSN. Hydrogen operation in the dual fuel mode with diesel exhibits a better performance and reduction in emissions compared with diesel in the entire load spectra. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Influence of advanced injection timing on the performance and emissions of CI engine fueled with ethanol-blended diesel fuel

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2008
Cenk Sayin
Abstract Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol-blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake-specific energy consumption (BSEC), brake-specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake-thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Significance of the injection timing of ephedrine to reduce the onset time of rocuronium

ANAESTHESIA, Issue 8 2008
D. W. Han
Summary We postulated that the onset time of rocuronium can be accelerated effectively if it is administered at the time when the effect of ephedrine on cardiac output has reached its maximum. Seventy-five male, anaesthetised, patients were randomly allocated to three groups. Ephedrine 70 ,g.kg,1 was administered at 4 min (Early) or 30 s (Late) before administering rocuronium. The control group received saline at 4 min and at 30 s before rocuronium. The onset time of rocuronium in the Early group was significantly shorter than in the Control group, but there was no difference in the onset time between the Late and Control groups. There were no significant differences in the intubating conditions of the three groups. Ephedrine 70 ,g.kg,1 can reduce the onset time of rocuronium effectively if rocuronium is administered at 4 min following the ephedrine injection, when the effect of ephedrine on cardiac output is expected to reach its maximum. [source]


Influence of advanced injection timing on the performance and emissions of CI engine fueled with ethanol-blended diesel fuel

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2008
Cenk Sayin
Abstract Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol-blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake-specific energy consumption (BSEC), brake-specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake-thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd. [source]