Home About us Contact | |||
Injection Molding Process (injection + molding_process)
Selected AbstractsPowder Metallurgical Near-Net-Shape Fabrication of Porous NiTi Shape Memory Alloys for Use as Long-Term Implants by the Combination of the Metal Injection Molding Process with the Space-Holder Technique,ADVANCED ENGINEERING MATERIALS, Issue 12 2009Manuel Köhl Abstract A new method was developed for producing highly porous NiTi for use as an implant material. The combination of the space-holder technique with the metal injection molding process allows a net-shape fabrication of geometrically complex samples and the possibility of mass production for porous NiTi. Further, the porosity can be easily adjusted with respect to pore size, pore shape, and total porosity. The influence of the surface properties of powder metallurgical NiTi on the biocompatibility was first examined using human mesenchymal stem cells (hMSCs). It was found that pre-alloyed NiTi powders with an average particle size smaller than 45,,m led to the surface properties most suitable for the adhesion and proliferation of hMSCs. For the production of highly porous NiTi, different space-holder materials were investigated regarding low C- and O-impurity contents and the reproducibility of the process. NaCl was the most promising space-holder material compared to PMMA and saccharose and was used in subsequent studies. In these studies, the influence of the total porosity on the mechanical properties of NiTi is investigated in detail. As a result, bone-like mechanical properties were achieved by the choice of Ni-rich NiTi powder and a space-holder content of 50,vol% with a particle size fraction of 355,500,,m. Pseudoelasticity of up to 6% was achieved in compression tests at 37,°C as well as a bone-like loading stiffness of 6.5,GPa, a sufficient plateau stress ,25 of 261,MPa and a value for ,50 of 415,MPa. The first biological tests of the porous NiTi samples produced by this method showed promising results regarding proliferation and ingrowth of mesenchymal stem cells, also in the pores of the implant material. [source] A review of current developments in process and quality control for injection moldingADVANCES IN POLYMER TECHNOLOGY, Issue 3 2005Zhongbao Chen Abstract Injection molding is one of the most versatile and important manufacturing processes capable of mass-producing complicated plastic parts in net shape with excellent dimensional tolerance. Injection molding process and quality control has been an active research area for many years, as part quality and yield requirements become more stringent. This paper reviews the state-of-the-art research and development in injection molding control. It organizes prior studies into four categories, namely, process setup, machine control, process control, and quality control, and presents the distinction and connection of these different levels of control. This paper further reviews and compares the typical variables, models, and control methods that have been proposed and employed for those control tasks. Strictly speaking, real online quality control without human intervention has yet to be realized, primarily due to the lack of transducers for online, real time quality response measurement, and a robust model that correlates the control variables with quantitative quality measurements. Based on the research progress to date, this paper suggests that the different levels of control tasks have to be integrated into a multilevel quality control system, and that the quality sensor and the process and quality model are the two most important areas for further advancement in injection molding control. © 2005 Wiley Periodicals, Inc. Adv Polym Techn 24: 165,182, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20046 [source] Powder Metallurgical Near-Net-Shape Fabrication of Porous NiTi Shape Memory Alloys for Use as Long-Term Implants by the Combination of the Metal Injection Molding Process with the Space-Holder Technique,ADVANCED ENGINEERING MATERIALS, Issue 12 2009Manuel Köhl Abstract A new method was developed for producing highly porous NiTi for use as an implant material. The combination of the space-holder technique with the metal injection molding process allows a net-shape fabrication of geometrically complex samples and the possibility of mass production for porous NiTi. Further, the porosity can be easily adjusted with respect to pore size, pore shape, and total porosity. The influence of the surface properties of powder metallurgical NiTi on the biocompatibility was first examined using human mesenchymal stem cells (hMSCs). It was found that pre-alloyed NiTi powders with an average particle size smaller than 45,,m led to the surface properties most suitable for the adhesion and proliferation of hMSCs. For the production of highly porous NiTi, different space-holder materials were investigated regarding low C- and O-impurity contents and the reproducibility of the process. NaCl was the most promising space-holder material compared to PMMA and saccharose and was used in subsequent studies. In these studies, the influence of the total porosity on the mechanical properties of NiTi is investigated in detail. As a result, bone-like mechanical properties were achieved by the choice of Ni-rich NiTi powder and a space-holder content of 50,vol% with a particle size fraction of 355,500,,m. Pseudoelasticity of up to 6% was achieved in compression tests at 37,°C as well as a bone-like loading stiffness of 6.5,GPa, a sufficient plateau stress ,25 of 261,MPa and a value for ,50 of 415,MPa. The first biological tests of the porous NiTi samples produced by this method showed promising results regarding proliferation and ingrowth of mesenchymal stem cells, also in the pores of the implant material. [source] A Lagrangian boundary element approach to transient three-dimensional free surface flow in thin cavitiesINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2001Jie Zhang Abstract The lubrication theory is extended for transient free-surface flow of a viscous fluid inside a three-dimensional thin cavity. The problem is closely related to the filling stage during the injection molding process. The pressure, which in this case is governed by the Laplace's equation, is determined using the boundary element method. A fully Lagrangian approach is implemented for the tracking of the evolving free surface. The domain of computation is the projection of the physical domain onto the (x,,y) plane. This approach is valid for simple and complex cavities as illustrated for the cases of a flat plate and a curved plate. It is found that the flow behavior is strongly influenced by the shape of the initial fluid domain, the shape of the cavity, and inlet flow pressure. Copyright © 2001 John Wiley & Sons, Ltd. [source] Online control of the injection molding process based on process variablesADVANCES IN POLYMER TECHNOLOGY, Issue 2 2009Walter Michaeli Abstract The conventional control of the injection molding process is based on machine variables, which cannot sufficiently characterize the course of the process. Hence, a system that controls the injection molding process based on process variables has been developed at the Institute of Plastics Processing at RWTH Aachen University during the last years. It controls the quality determining process variable cavity pressure directly and realizes a desired course of cavity pressure in the injection and holding pressure phases. The cavity pressure course in the holding pressure phase is controlled online on the basis of pvT behavior of the processed plastic material. Thus, an optimal course of the process in the pvT diagram can be guaranteed and the quality constancy of the molded parts can be clearly increased. Using the pvT-based process control, the effect of varying mold and melt temperatures on the molded part weight can be decreased by about 90% compared with the conventional process control. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 28:65,76, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20153 [source] Cavity pressure control during cooling in plastic injection moldingADVANCES IN POLYMER TECHNOLOGY, Issue 3 2006B. Pramujati Abstract Cavity pressure control during filling, packing, and cooling phases is imperative for maintaining product quality in injection molding process. This paper presents the design and implementation of a strategy to control cavity pressure profile during the cooling phase. In order to do this, a controlled variable parameter was defined to be the time constant , of the pressure profile. This parameter can be used effectively to control the shape of the cavity pressure over the cooling cycle. The coolant flow rate through the mold was used as the manipulated variable. A predictive control system was designed and implemented successfully to allow monitoring and control of , at several setpoints ,sp resulting in good and effective cavity pressure control. © 2006 Wiley Periodicals, Inc. Adv Polym Techn 25:170,181, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20068 [source] Influence of processing conditions and part design on the gas-assisted injection molding processADVANCES IN POLYMER TECHNOLOGY, Issue 4 2001Nan-Shing Ong Gas-assisted injection molding has been developed to solve the problems that the conventional injection molding process is not able to. It is believed that the new process is able to produce final parts with higher quality at a more effective cost. Warpage and sink marks are reduced and there is material-savings to be reaped. This research aims to investigate some of the processing parameters that come with this new process. They include shot size, gas delay time, gas pressure, and melt temperature. The influence of part design is also looked into. Five designs were used in the research and compared. The responses evaluated include gas bubble length, residual wall thickness, bending strength, warpage, and fingering. © 2001 John Wiley & Sons, Inc. Adv Polym Techn 20: 270,280, 2001 [source] Laser Welding of Plastics , a Neat ThingLASER TECHNIK JOURNAL, Issue 5 2010The story of a popular laser application Industry has been dealing with the joining of plastics for over half a century. The wish for an economically viable method of joining components was there already when the injection molding process was developed. With the advent of industrial laser technology, laser welding developed into a practical solution for many plastics joining problems. [source] Effect of Processing Parameters on the Mechanical Properties of Injection Molded Thermoplastic Polyolefin (TPO) Cellular FoamsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 7 2008Steven Wong Abstract In this study, the effects of processing parameters on the mechanical properties of injection molded thermoplastic polyolefin (TPO) foams are investigated. Closed cell TPO foams were prepared by injection molding process. The microstructure of these foamed samples was controlled by carefully altering the processing parameters on the injection molding machine. The foam morphologies were characterized in terms of skin thickness, surface roughness, and relative foam density. Tensile properties and impact resistance of various injection molded TPO samples were correlated with various foam morphologies. The findings show that the mechanical properties are significantly affected by foam morphologies. The experimental results obtained from this study can be used to predict the microstructure and mechanical properties of cellular injection molded TPO foams prepared with different processing parameters. [source] An Approach to Calculating Wear on Annular Non-Return ValvesMACROMOLECULAR MATERIALS & ENGINEERING, Issue 11 2002Helmut Potente Abstract The serviceability of non-return valves has a major influence on the productivity of the injection molding process. During a meeting of experts held at our Institute, it was seen that closing behavior and wear are the key problems encountered in practice. The conducted investigations to tackle these questions have shown that both an improved closing behavior and a lower level of wear can be achieved by reducing the inside radius of the locking ring. Pressure profile over the length of a non-return valve (n,=,0.4; ,=,25,000 mm3/s). [source] Improved Design of Shearing Sections with New Calculation Models Based on 3D Finite-Element SimulationsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 11 2002Helmut Potente Abstract New models for the Maddock and spiral shearing sections have been developed, employing three-dimensional finite element analysis (3D FEA). These models describe the pressure-throughput and power consumption behavior of the shearing sections for both the extrusion and the injection molding process and have been implemented in the REX 6.0 and PSI 4.0 simulation software. As a consequence it is now possible to describe the process behavior of these shearing sections within just a few seconds with the accuracy of FEA calculations. Actual Maddock shearing section (left) and actual spiral shearing section (right). [source] Theoretical and visual study of bubble dynamics in foam injection moldingPOLYMER ENGINEERING & SCIENCE, Issue 3 2010Mehdi Mahmoodi This article presents an experimental observation and a theoretical prediction of bubble dynamics in foam injection molding process with a main focus on the cell collapse phenomenon under pressure. Using a visualizing setup, cell growth behavior under a nonisothermal condition was monitored. In conjunction with the growth behavior, dynamics of cell collapse under different pressures and the effect of growing time on collapse behavior and final cell size were studied. Theoretical simulation of bubble behavior included power law model, which predicted bubble dynamics during foaming process. The results show that collapse phenomenon strongly depends on both exerted holding pressure and growth time. The presented model can also give a reasonable prediction of growth and collapse of cells and could give insight to control of cell size in injection foaming process. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers [source] Computer simulation of stress-induced crystallization in injection molded thermoplasticsPOLYMER ENGINEERING & SCIENCE, Issue 11 2001Jianxin Guo Injection molding of semicrystalline plastics was simulated with the proposed stress-induced crystallization model. A pseudo-concentration method was used to track the melt front advancement. Stress relaxation was considered using the WFL model. Simulations were carried out under different processing conditions to investigate the effect of processing parameters on the crystallinity of the final part. The simulation results reproduced most of the experimental results in the literature. Comparison is made between the slow-crystallizing polymer (PET) and fast-crystallizing polymer (PP) to demonstrate the effect of stress on the crystallization kinetics during the injection molding process for materials with different crystallization properties. The results show that for fast-crystallizing plastics, stress has little effect on the final crystallinity in the injection molded parts. [source] Modeling of structural reaction injection molding process.POLYMER ENGINEERING & SCIENCE, Issue 5 2001A mathematical model of the infusion process in producing reinforced articles is proposed. The model is based on the analysis of flow of a Newtonian liquid inside a rectangular multilayer channel. According to the model, a liquid enters the central (feeding) layer, moves through this layer, and simultaneously impregnates peripheral layers. So, the flow is two-dimensional. Flow inside the porous layers is treated in terms of the Darcy equation with different permeability coefficients in two directions. Principal solutions for the flow front development and pressure evolution were obtained and analyzed. Then the initial model, developed for a Newtonian liquid, is generalized for the so-called "rheokinetic" liquid, which changes its rheological properties in time as a result of temperature variation and/or any possible chemical process, in particular, the reaction of curing of a binder. It was proven that in this case the solution is automodel. This means that the solutions obtained for a Newtonian liquid in the dimensionless form are valid for an arbitrary rheokinetic liquid. [source] |