Initial Slope (initial + slope)

Distribution by Scientific Domains

Selected Abstracts

Elimination Mechanisms in the Aminolysis of Sulfamate Esters of the Type NH2SO2OC6H4X , Models of Enzyme Inhibitors

William J. Spillane
Abstract The kinetics of the reaction of 4-nitrophenyl sulfamate NH2SO2OC6H4NO2 -4 (1a) in acetonitrile (ACN) with a series of pyridines (pKa range ca. 8 units) and alicyclic amines (pKa range ca. 3.6 units) has been studied in the presence of excess amine at various temperatures. The compounds 1a,1f are important as model substrates for the medicinally important sulfamate esters 667-coumate and emate and analogues. Pseudo-first-order rate constants (kobsd.) have been obtained mainly by the release of 4-nitrophenol/4-nitrophenoxide. Slopes of plots of kobsd. vs. [amine] gave second-order rate constants (k2), and Brönsted plots were biphasic for the aminolysis (with alicyclic amines) with an initial slope ,1 = 0.53 and a subsequent slope ,2 = 0.19. The change in slope occurs near the first pKa of 1a (17.9) in ACN. Leaving-group effects were probed by using the same series of phenyl sulfamates, i.e. 1a,f and the alicyclic amines N -formylpiperazine and pyrrolidine. The reactions were considered to be dissociative in nature involving E2- and E1cB- type mechanisms with the phenyl sulfamate anion 2 being involved in pyridine and in the weaker alicyclic amines (,1 segment) and a phenyl sulfamate dianion 3 being involved with the stronger alicyclic bases (,2 segment). The calculation of Leffler indices (,) for bond-forming (base···H+) and bond-breaking (S,OAr) steps allows fuller interpretation of the mechanisms occurring, which are seen as having the N -sulfonylamines, HN=SO2 and ,N=SO2 on the reaction pathways leading to products. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]

Water sorption kinetics in light-cured poly-HEMA and poly(HEMA- co -TEGDMA); determination of the self-diffusion coefficient by new iterative methods

Irini D. Sideridou
Abstract The present investigation is concerned with the determination of self-diffusion coefficient (D) of water in methacrylate-based biomaterials following Fickian sorption by two new methods: the Iterative and the Graphical methods. The D value is traditionally determined by means of the initial slope of the corresponding sorption curve and the so-called Stefan's approximation. The proposed methods using equations without approximations and data resulting from the whole sorption range reach to accurate values of D, even when the sorption curve does not present an initial linear portion. In addition to D, the Graphical method allows the extrapolation of the mass of the sorbed water at equilibrium (M,), even when the equilibrium specimen's mass fluctuates around its limited value (m,). The test of the proposed procedures by means of ideal and Monte Carlo simulated data revealed that these methods are fairly applicable. The obtained D values compared with those determined by means of the Stephan's method revealed that the proposed methods provide more accurate results. Finally, the proposed methods were successfully applied to the experimental determination of the diffusion coefficient of water (50°C) in the homopolymer of 2-hydroxyethyl methacrylate (HEMA) and in the copolymer of HEMA with triethylene glycol dimethacrylate (98/2 mol/mol). These polymers were prepared by light curing (, = 470 nm) at room temperature in presence of camphorquinone and N,N -dimethylaminoethyl methacrylate as initiator. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source]


Margaret Davey
Iron starvation induced marked increases in flavodoxin abundance and decreases in light-saturated and light-limited photosynthesis rates in the diatom Chaetoceros muelleri. Consistent with the substitution of flavodoxin for ferredoxin as an early response to iron starvation, increases of flavodoxin abundance were observed before declines of cell division rate or chl a specific photosynthesis rates. Changes in the abundance of flavodoxin after the addition of iron to iron-starved cells indicated that flavodoxin was not actively degraded under iron-replete conditions. Greater declines in light-saturated oxygen evolution rates than dark oxygen consumption rates indicated that the mitochondrial electron transfer chain was not affected as greatly by iron starvation as the photosynthetic electron transfer chain. The carbon:nitrogen ratio was unaffected by iron starvation, suggesting that photosynthetic electron transfer was a primary target of iron starvation and that reductions in nitrate assimilation were due to energy limitation (the C:N ratio would be expected to rise under nitrogen-limited but energy-replete conditions). Parallel changes were observed in the maximum light-saturated photosynthesis rate and the light-limited initial slope of the photosynthesis-light curve during iron starvation and recovery. The lowest photosynthesis rates were observed in iron-starved cells and the highest values in iron-replete cells. The light saturation parameter, Ik, was not affected by iron starvation, nor was the chl-to-C ratio markedly reduced. These observations were consistent with iron starvation having a similar or greater effect on photochemical charge separation in PSII than on downstream electron transfer steps. Declines of the ratio of variable to maximum fluorescence in iron-starved cells were consistent with PSII being a primary target of iron starvation. The functional cross-section of PSII was affected only marginally (<20%) by iron starvation, with the largest values observed in iron-starved cells. The rate constant for electron transfer calculated from fast repetition rate fluorescence was found to covary with the light-saturated photosynthesis rate; it was lowest in the most severely starved cells. [source]


A. Cabello-Pasini
Porphyra perforata is a common seaweed inhabiting the upper intertidal zone, and as a consequence it experiences great fluctuations in tissue temperature and desiccation. The objective of this work was to evaluate the effect of ambient temperature and the tissue desiccation status on the photosynthetic performance of P. perforata. Photosynthetic performance was evaluated polarographically after the temperature or desiccation treatments. Maximum photosynthesis (Pmax) occurred between 25 and 30° C and decreased at higher and lower temperatures, however, no significant differences were observed in the initial slope of photosynthesis (,) from 10 to 30° C. This suggests that the photosynthetic efficiency of this species does not decrease as a result of fluctuating temperatures during tidal emergence/submergence. Pmax and , were relatively constant in tissue of P. perforata with 5 to 100% relative water content. This also suggests that natural desiccation rates during low tides do not decrease photosynthetic rates in this species. Variations in the synthesis of specific proteins as a result of fluctuations in temperature and relative water content in the tissue of P. perforata are being studied. [source]

Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions

ABSTRACT Spinach (Spinacia oleracea) plants were grown under the day/night temperature regime of 15/10 °C (LT) or 30/25 °C (HT). The plants were also transferred from HT to LT when the sample leaves were at particular developmental stages (HL-transfer). With fully mature leaves, the light-saturated photosynthetic rate (A) at the ambient CO2 concentration (Ca) of 1500 µL L,1 (A1500) and the initial slope of A versus intercellular CO2 concentration (Ci) at low Ci region (IS) were obtained to assess capacities of RuBP regeneration and carboxylation. Photosynthetic components including Rubisco and cytochrome f (Cyt f) were also determined. The optimum temperatures for A at Ca of 360 µL L,1 (A360), A1500 and IS in HT leaves were 27, 36 and 24 °C, whereas those in LT leaves were 18, 30 and 18 °C. The optimum temperatures in HL-transfer leaves approached those of LT leaves with the increase in the duration at LT. The shift in the optimum temperature was greater and quicker for IS than A1500. By the HL-transfer, the maximum values of A1500 and IS also increased. The maximum A1500 and Cyt f content increased more promptly than IS and Rubisco content. Changes in the Cyt f/Rubisco ratio were reflected to those in the A1500/IS ratio. Taken together, photosynthetic acclimation to low temperature in spinach leaves was due not only to the change in the balance of the absolute rates of RuBP regeneration and carboxylation but also to the large change in the optimum temperature of RuBP carboxylation. [source]

Effect of species richness and relative abundance on the shape of the species accumulation curve

Graham G. Thompson
Abstract We explain how species accumulation curves are influenced by species richness (total number of species), relative abundance and diversity using computer-generated simulations. Species richness defines the boundary of the horizontal asymptote value for a species accumulation curve, and the shape of the curve is influenced by both relative abundance and diversity. Simulations with a high proportion of rare species and a few abundant species have a species accumulation curve with a low ,shoulder' (inflection point on the ordinate axis) and a long upward slope to the asymptote. Simulations with a high proportion of relatively abundant species have a steeply rising initial slope to the species accumulation curve and plateau early. Diversity (as measured by Simpson's and Shannon,Weaver indices) for simulations is positively correlated with the initial slope of the species accumulation curve. Species accumulation curves cross when one simulation has a high proportion of both rare and abundant species compared with another that has a more even distribution of abundance among species. [source]

A unified mathematical framework for the measurement of richness and evenness within and among multiple communities

OIKOS, Issue 2 2004
Thomas D. Olszewski
Biodiversity can be divided into two aspects: richness (the number of species or other taxa in a community or sample) and evenness (a measure of the distribution of relative abundances of different taxa in a community or sample). Sample richness is typically evaluated using rarefaction, which normalizes for sample size. Evenness is typically summarized in a single value. It is shown here that Hurlbert's probability of interspecific encounter (,1), a commonly used sample-size independent measure of evenness, equals the slope of the steepest part of the rising limb of a rarefaction curve. This means that rarefaction curves provide information on both aspects of diversity. In addition, regional diversity (gamma) can be broken down into the diversity within local communities (alpha) and differences in taxonomic composition among local communities (beta). Beta richness is expressed by the difference between the composite rarefaction curve of all samples in a region with the collector's curve for the same samples. The differences of the initial slopes of these two curves reflect the beta evenness thanks to the relationship between rarefaction and ,1. This relationship can be further extended to help interpret species-area curves (SAC's). As previous authors have described, rarefaction provides the null hypothesis of passive sampling for SAC's, which can be interpreted as regional collector's curves. This allows evaluation of richness and evenness at local and regional scales using a single family of well-established, mathematically related techniques. [source]