Home About us Contact | |||
Inhibitory Pathways (inhibitory + pathway)
Selected AbstractsImpaired intracortical inhibition in the primary somatosensory cortex in focal hand dystoniaMOVEMENT DISORDERS, Issue 4 2008Yohei Tamura MD Abstract Somesthetic temporal discrimination (STD) is impaired in focal hand dystonia (FHD). We explored the electrophysiological correlate of the STD deficit to assess whether this is due to dysfunction of temporal inhibition in the somatosensory inhibitory pathway or due to dysfunction in structures responsible for nonmodality-specific timing integration. Eleven FHD patients and 11 healthy volunteers were studied. STD threshold was investigated as the time interval required for perceiving a pair of stimuli as two separate stimuli in time. We also examined the somatosensory-evoked potential (SEP) in a paired-pulse paradigm. We compared STD threshold and recovery function of SEP between the groups. STD thresholds were significantly greater in FHD than in healthy volunteers. The amount of P27 suppression in the 5 ms-ISI condition was significantly less in FHD. It was also found that the STD threshold and P27 suppression were significantly correlated: the greater the STD threshold, the less the P27 suppression. Significantly less suppression of P27 with a lack of significant change in N20 indicates that the impairment of somatosensory information processing in the time domain is due to dysfunction within the primary somatosensory cortex, suggesting that that the STD deficit in FHD is more attributable to dysfunction in the somatosensory pathway. © 2007 Movement Disorder Society [source] The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritisARTHRITIS & RHEUMATISM, Issue 7 2010Amalia P. Raptopoulou Objective T cells play a major role in the pathogenesis of rheumatoid arthritis (RA). The programmed death 1 (PD-1)/programmed death ligand 1 (PDL-1) pathway is involved in peripheral tolerance through inhibition of T cells at the level of synovial tissue. The aim of this study was to examine the role of PD-1/PDL-1 in the regulation of human and murine RA. Methods In synovial tissue and synovial fluid (SF) mononuclear cells from patients with RA, expression of PD-1/PDL-1 was examined by immunohistochemistry and flow cytometry, while PD-1 function was assessed in RA peripheral blood (PB) T cells after stimulation of the cells with anti-CD3 and PDL-1.Fc to crosslink PD-1. Collagen-induced arthritis (CIA) was induced in PD-1,/, C57BL/6 mice, and recombinant PDL-1.Fc was injected intraperitoneally to activate PD-1 in vivo. Results RA synovium and RA SF were enriched with PD-1+ T cells (mean ± SEM 24 ± 5% versus 4 ± 1% in osteoarthritis samples; P = 0.003) and enriched with PDL-1+ monocyte/macrophages. PD-1 crosslinking inhibited both T cell proliferation and production of interferon-, (IFN,) in RA patients; PB T cells incubated with RA SF, as well as SF T cells from patients with active RA, exhibited reduced PD-1,mediated inhibition of T cell proliferation at suboptimal, but not optimal, concentrations of PDL-1.Fc. PD-1,/, mice demonstrated increased incidence of CIA (73% versus 36% in wild-type mice; P < 0.05) and greater severity of CIA (mean maximum arthritis score 5.0 versus 2.3 in wild-type mice; P = 0.040), and this was associated with enhanced T cell proliferation and increased production of cytokines (IFN, and interleukin-17) in response to type II collagen. PDL-1.Fc treatment ameliorated the severity of CIA and reduced T cell responses. Conclusion The negative costimulatory PD-1/PDL-1 pathway regulates peripheral T cell responses in both human and murine RA. PD-1/PDL-1 in rheumatoid synovium may represent an additional target for immunomodulatory therapy in RA. [source] Evidence for VIP1/PACAP receptors in the afferent pathway mediating surgery-induced fundic relaxation in the ratBRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2000G E Boeckxstaens We previously reported activation of an inhibitory adrenergic and a non-adrenergic non-cholinergic (NANC) pathway during abdominal surgery relaxing the rat gastric fundus. In the present study, we investigated the possible role of nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) in the NANC part of the surgery-induced fundic relaxation. The effect of the NO biosynthesis inhibitor NG -nitro- L -arginine (L -NOARG), the non-selective VIP receptor antagonist [D -p-Cl-Phe6,Leu17]-VIP and the selective VIP1 receptor antagonist [Acetyl-His1,D -Phe2,Lys15,Arg16,Leu17]-VIP was investigated on the non-adrenergic fundic relaxation induced by manipulation of the small intestine followed by resection of the caecum. Guanethidine partly reduced the manipulation-induced fundic relaxation. Addition of L -NOARG reduced this non-adrenergic component, whereas the non-selective VIP receptor antagonist had no significant effect. Combination of L -NOARG and the non-selective VIP antagonist however further reduced the relaxation to manipulation. The selective VIP1 receptor antagonist reduced the mean and maximal relaxation induced by abdominal surgery in the presence of guanethidine. When combined with L -NOARG, the relaxation of the gastric fundus was almost completely abolished. The VIP1 receptor antagonist alone had no significant effect on the mean and maximal relaxation, but enhanced recovery of fundic tone. In conclusion, as VIP1 receptors are not present in the rat gastric fundus, these results suggest that the NANC inhibitory pathway activated during abdominal surgery involves VIP1 receptors, most likely in the afferent limb. The inhibitory neurotransmitters released at the level of the gastric fundus smooth muscle are NO and a substance different from VIP. British Journal of Pharmacology (2000) 131, 705,710; doi:10.1038/sj.bjp.0703625 [source] Functional magnetic resonance imagery (fMRI) in fibromyalgia and the response to milnacipranHUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue S1 2009Yves MainguyArticle first published online: 28 MAY 200 Abstract Functional imaging has been used to study response to pain in fibromyalgia patients. Functional magnetic resonance imagery (fMRI) which tracks local changes in blood flow has a higher spatial and temporal resolution than other techniques such as positron emission tomography (PET) or single-photon emission tomography (SPECT). fMRI studies in fibromyalgia patients suggest that similar levels of subjective pain result in similar central nervous system (CNS) activation in both fibromyalgia patients and controls. For a similar stimulus, however, fibromyalgia patients have a greater subjective sensation of pain. This increased sensitivity is accompanied with a decreased activity in brain regions implicated in the descending pain inhibitory pathways. The hypothesis that increased sensitivity to pain is due to decreased activity of the descending inhibitory pathways is supported by results with milnacipran. Fibromyalgia patients treated with the serotonin and noradrenaline reuptake inhibitor, milnacipran, exhibited a reduction in pain sensitivity and a parallel increase in activity in brain regions implicated in the descending pain inhibitory pathways compared to placebo-treated patients. Copyright © 2009 John Wiley & Sons, Ltd. [source] Hormone replacement therapy and cardiovascular disease: increased risks of venous thromboembolism and stroke, and no protection from coronary heart diseaseJOURNAL OF INTERNAL MEDICINE, Issue 5 2004G. D. O. Lowe Abstract. Hormone replacement therapy (HRT) was increasingly promoted over the last 40 years to improve quality of life, and to reduce the risks of osteoporotic fractures and coronary heart disease (CHD). In recent years, observational studies, randomized trials and systematic reviews of such trials have shown that HRT does not reduce, but actually increases cardiovascular risk. HRT increases the relative risks of venous thromboembolism (twofold), and of fatal or disabling stroke (by 50%); whilst increasing the early risk of myocardial infarction and having no protective effect against CHD on longer term use. Possible mechanisms for these increased cardiovascular risks include down-regulation of several inhibitory pathways of blood coagulation, resulting in increased coagulation activation, which promotes venous and arterial thrombosis. The implications for prescription are discussed, as are lessons for future evaluation of health care interventions. [source] Propagating contractions of the circular muscle evoked by slow stretch in flat sheets of guinea-pig ileumNEUROGASTROENTEROLOGY & MOTILITY, Issue 6 2001S. J. H. Brookes Flat sheet preparations of guinea-pig ileum were stretched circumferentially and the propagation of circular muscle contractions along the preparation was investigated. Slow stretch, at 100 ,m s,1, of a 50-mm long flat sheet of intestine, evoked circular muscle contraction orally, which propagated, without decrement, for up to 30 mm. This occurred despite circular muscle shortening being prevented, and in the absence of propulsion of contents. Thus, propagation in this flat sheet preparation could not explained on the basis of neuro-mechanical interactions, as previously proposed. Irrespective of the length of preparations, contraction amplitude decreased significantly in the most aboral 10,15 mm of intestine. This was not due to descending inhibitory pathways, but was associated with interruption of ascending excitatory pathways near the aboral end. Slow waves were not detected in circular muscle cells in any preparation (n=8). Smooth muscle action potentials evoked in circular muscle cells, in the presence of tetrodotoxin (TTX, 0.6 ,mol L,1), did not propagate for more than 1 mm in the longitudinal axis. Propagation of circular muscle activity, evoked by slow stretch of flat sheet preparations, reveals the presence of a mechanism other than myogenic spread or the neuro-mechanical interactions previously proposed to account for propagation; the nature of this mechanism remains to be determined. [source] Comparisons of structural and functional abnormalities in mouse b-wave mutantsTHE JOURNAL OF PHYSIOLOGY, Issue 18 2008Maureen A. McCall In the most simplistic view, the retinal circuit can be divided into vertical excitatory pathways that use glutamate as their neurotransmitter and lateral inhibitory pathways in the outer and inner synaptic layers that modulate excitation via glycine and GABA. Within the vertical excitatory pathways, the visual signal is initiated in the rod, cone or both photoreceptors, depending on the adaptation state of the retina. This signal is transmitted to the rest of the retina through the bipolar cells, which can be subdivided based on: the photoreceptor that provides their input, their dendritic and axonal morphology, and the polarity of their response evoked by a luminance increment, e.g. depolarizing or hyperpolarizing responses. The polarity of this response is controlled by the type of glutamatergic postsynaptic receptor that is expressed on their dendritic terminals. Hyperpolarizing bipolar cells express AMPA/kainate receptors, whereas depolarizing bipolar cells (DBCs) express the metabotropic glutamate receptor 6 (Grm6). The electroretinogram (ERG) is a non-invasive method used to assess overall retinal function. The initiation of the visual signal in the photoreceptors is reflected in the ERG a-wave and the ensuing depolarization of DBCs in the b-wave. When there is failure of signal transmission from photoreceptors to DBCs or signalling within DBCs, the ERG a-wave is present, while the b-wave is absent or significantly reduced. This ERG phenotype has been found in the human population and is referred to as congenital stationary night blindness. Until recently, it had been assumed that the absence of a b-wave was indicative of a lack of signalling through the On pathway, leaving the Off pathway unaffected. Here we review recent findings that demonstrate that many mouse mutants share a no b-wave ERG phenotype but their retinal morphology and RGC responses differ significantly, suggesting very different effects of the underlying mutations on output from the DBCs to the rest of the retinal circuit. [source] Control of non-adrenergic non-cholinergic reflex motor responses in circular muscle of guinea-pig small intestine by Met-enkephalinAUTONOMIC & AUTACOID PHARMACOLOGY, Issue 4 2002Chr. Ivancheva Summary 1 A triple organ bath method allowing the synchronous recording of the motor activity of the circular muscle layer belonging to the oral and anal segments of guinea-pig small intestine adjacent to an electrically stimulated middle segment was developed to study the ascending and descending reflex motor responses. 2 Electrical field stimulation (0.8 ms, 40 V, 5 Hz, 10 s) applied to the middle part of the segments elicited tetrodotoxin (1 ,m)-sensitive ascending and descending contractile responses of the nonstimulated parts, oral and anal, respectively. The ascending contraction was more pronounced as compared with the descending contraction. 3 In the presence of phentolamine (5 ,m), propranolol (5 ,m) and atropine (3 ,m) a significant decrease in the amplitude of the ascending contraction was seen and a descending relaxation, instead of a contraction was observed. 4 Met-enkephalin applied at a single concentration (0.1 ,m) or cumulatively (0.001,1 ,m) inhibited both non-adrenergic non-cholinergic (NANC) descending relaxation and ascending contraction with similar efficacy but different potency, IC50 being 5.9 ± 0.3 and 39.0 ± 4 nm, respectively. Naloxone (0.5 ,m) prevented the effects of Met-enkephalin. 5 L-NNA (0.5 mm), an inhibitor of nitric oxide synthesis, increased the ascending contraction and strongly reduced but not abolished the descending relaxation. l -Arginine (0.5 mm) restored the motor responses to the initial level in l -NNA-pretreated preparations, d -Arginine (0.5 nm) had no effects. 6 Met-enkephalin (0.1 ,m) depressed the l -NNA-dependent increase of the ascending contraction and failed to change the l -NNA-resistant part of the descending relaxation. 7 Met-enkephalin did not alter spontaneous NANC mechanical activity. SNP (1 or 10 ,m), an exogenous donor of nitric oxide, caused a concentration-dependent relaxation. The effects of SNP persisted in Met-enkephalin (0.1 ,m)-pretreated preparations. 8 NANC reflex ascending contraction and descending relaxation were synchronously induced by a local nerve stimulation indicating a functional coactivation of NANC orally projected excitatory and anally directed inhibitory pathways. Acting prejunctionally, Met-enkephalin provided a negative controlling mechanism inhibiting both ascending and descending, mainly nitric oxide mediated, reflex responses. A higher sensitivity of the descending relaxation to Met-enkephalin was observed suggesting an essential role of opioid(s) in reducing the efficacy of descending motor activity. [source] |