Inhibitory

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by Inhibitory

  • inhibitory ability
  • inhibitory action
  • inhibitory activity
  • inhibitory amino acid transporter
  • inhibitory antibody
  • inhibitory avoidance
  • inhibitory capacity
  • inhibitory circuit
  • inhibitory circuitry
  • inhibitory compound
  • inhibitory concentration
  • inhibitory concentration value
  • inhibitory constant
  • inhibitory control
  • inhibitory deficit
  • inhibitory domain
  • inhibitory effect
  • inhibitory effects
  • inhibitory factor
  • inhibitory fc
  • inhibitory function
  • inhibitory influence
  • inhibitory input
  • inhibitory interneuron
  • inhibitory jaw reflex
  • inhibitory junction potential
  • inhibitory mechanism
  • inhibitory molecule
  • inhibitory motif
  • inhibitory neuron
  • inhibitory neurone
  • inhibitory neurotransmission
  • inhibitory neurotransmitter
  • inhibitory pathway
  • inhibitory peptide
  • inhibitory polypeptide
  • inhibitory postsynaptic current
  • inhibitory potency
  • inhibitory potential
  • inhibitory process
  • inhibitory profile
  • inhibitory property
  • inhibitory protein
  • inhibitory receptor
  • inhibitory reflex
  • inhibitory response
  • inhibitory rna
  • inhibitory role
  • inhibitory signal
  • inhibitory substance
  • inhibitory synapsis
  • inhibitory synaptic transmission
  • inhibitory system
  • inhibitory tone
  • inhibitory transmission

  • Selected Abstracts


    Pakistolides A and B, Novel Enzyme Inhibitory and Antioxidant Dimeric 4-(Glucosyloxy)Benzoates from Berchemia pakistanica

    HELVETICA CHIMICA ACTA, Issue 2 2004
    Naveen Mukhtar
    Pakistolides A and B, novel dimeric , -(glucosyloxy)benzoates were isolated from Berchemia pakistanica and assigned structures 1 and 2 on the basis of extensive NMR studies. In addition, the known compounds 7,5,-dimethoxy-3,5,2,-trihydroxyflavone (=3,5-dihydroxy-2-(2-hydroxy-5-methoxyphenyl)-7-methoxy-4H -1-benzopyran-4-one), 4,,5-dihydroxy-3,6,7-trimethoxyflavone (=5-hydroxy-2-(4-hydroxyphenyl)-3,6,7-trimethoxy-4H -1-benzopyran-4-one), 5,6-dihydroxy-4,7-dimethoxy-2-methylanthracene-9,10-dione, and 1,3,4-trihydroxy-6,7,8-trimethoxy-2-methylanthracene-9,10-dione were reported for the first time from the genus Berchemia. Both 1 and 2 showed significant , -glucosidase and lipoxygenase inhibitory activities, while 2 also showed antioxidant potential. [source]


    Acute Alcohol Inhibits the Induction of Nuclear Regulatory Factor ,B Activation Through CD14/Toll-Like Receptor 4, Interleukin-1, and Tumor Necrosis Factor Receptors: A Common Mechanism Independent of Inhibitory ,B, Degradation?

    ALCOHOLISM, Issue 11 2002
    Pranoti Mandrekar
    Background Nuclear translocation and DNA binding of the nuclear factor ,B (NF-,B) is an early event in inflammatory cell activation in response to stimulation with bacterial components or cytokines. Cell activation via different receptors culminates in a common pathway leading to NF-,B activation and proinflammatory cytokine induction. We have previously shown that acute alcohol inhibits NF-,B activation by lipopolysaccharide (LPS) in human monocytes. Here we investigated whether acute alcohol treatment of human monocytes also inhibits NF-,B when induced through activation of the interleukin (IL)-1 or tumor necrosis factor (TNF) receptors. Methods Human peripheral blood monocytes were treated with LPS, TNF,, and IL-1, in the presence or absence of 25mM alcohol for 1 hr. NF-,B activation was determined by electrophoretic mobility shift assays using nuclear extracts. Inhibitory ,B, (I,B,) was estimated by Western blotting in cytoplasmic extracts. Chinese hamster ovary cells expressing human CD14 were treated with LPS in the presence or absence of alcohol to study NF-,B and I,B, regulation. Results Our results indicate that acute alcohol inhibits IL-1,- and TNF,-induced NF-,B activation. We further show in CD14/toll-like receptor 4,expressing Chinese hamster ovary cells the specificity of alcohol-mediated inhibition of NF-,B via the toll-like receptor 4/CD14 receptors. Inhibition of NF-,B by acute alcohol was concomitant with decreased levels of the I,B, molecule in the cytoplasm of LPS, IL-1, and TNF,-activated monocytes. Conclusions These data suggest a unique, I,B,-independent pathway for the inhibition of NF-,B activation by acute alcohol in monocytes. Universal inhibition of NF-,B by acute alcohol via these various receptor systems suggests a target for the effects of alcohol in the NF-,B activation cascade that is downstream from I,B, degradation. Further, these results demonstrate that acute alcohol is a potent inhibitor of NF-,B activation by mediators of early (LPS) or late (IL-1, TNF,) stages of inflammation in monocytes. [source]


    Review article: the modern management of hepatic encephalopathy

    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2010
    J. S. BAJAJ
    Aliment Pharmacol Ther,31, 537,547 Summary Background, Hepatic encephalopathy, both overt and minimal, forms a continuum of cognitive change in cirrhosis. Strategies to diagnose and treat hepatic encephalopathy have evolved considerably. Aim To examine the updated diagnostic and treatment strategies for hepatic encephalopathy. Methods, Techniques for the clinical, psychometric and neurophysiological evaluation of hepatic encephalopathy are reviewed. The methods reviewed include pure clinical scales (West-Haven), psychometric tests (PSE-syndrome test), neurophysiological tests (EEG, Critical flicker frequency, CFF) and computerized tests (Inhibitory control test, ICT). Results, Clinical scales are limited, whereas psychometric tests (specifically PSE-syndrome test), CFF and ICT can be used to diagnose minimal hepatic encephalopathy. However, there is no single test that can capture the entire spectrum of cognitive impairment. Treatment options and goals depend on the acuity of hepatic encephalopathy. In-patient management should concentrate on supportive care, precipitating factor reversal and lactulose and/or rifaximin therapy. Out-patient therapy should aim to prevent recurrences, and both lactulose and rifaximin have evidence to support their use. Conclusions, Diagnostic techniques for hepatic encephalopathy range from simple scales to sophisticated tools. Treatment options depend on the stage of hepatic encephalopathy. The future challenge is to evaluate cognitive function as a continuum with clinically relevant outcomes and to develop well-tolerated and inexpensive treatments for hepatic encephalopathy. [source]


    Growth of Rhodospirillum rubrum on synthesis gas: Conversion of CO to H2 and poly-,-hydroxyalkanoate

    BIOTECHNOLOGY & BIOENGINEERING, Issue 2 2007
    Young S. Do
    Abstract To examine the potential use of synthesis gas as a carbon and energy source in fermentation processes, Rhodospirillum rubrum was cultured on synthesis gas generated from discarded seed corn. The growth rates, growth and poly-,-hydroxyalkanoates (PHA) yields, and CO oxidation/H2 evolution rates were evaluated in comparison to the rates observed with an artificial synthesis gas mixture. Depending on the gas conditioning system used, synthesis gas either stimulated or inhibited CO-oxidation rates compared to the observations with the artificial synthesis gas mixture. Inhibitory and stimulatory compounds in synthesis gas could be removed by the addition of activated charcoal, char-tar, or char-ash filters (char, tar, and ash are gasification residues). In batch fermentations, approximately 1.4 mol CO was oxidized per day per g cell protein with the production of 0.75 mol H2 and 340 mg PHA per day per g cell protein. The PHA produced from R. rubrum grown on synthesis gas was composed of 86% ,-hydroxybutyrate and 14% ,-hydroxyvalerate. Mass transfer of CO into the liquid phase was determined as the rate-limiting step in the fermentation. Biotechnol. Bioeng. 2007;97: 279,286. © 2006 Wiley Periodicals, Inc. [source]


    New 5-Hydroxy-2-(hydroxymethyl)-4H-pyran-4-one Derivatives Has Both Tyrosinase Inhibitory and Antioxidant Properties

    CHEMINFORM, Issue 27 2007
    Ho Sik Rho
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


    Inhibitory functioning across ADHD subtypes: Recent findings, clinical implications, and future directions

    DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 4 2008
    Zachary W. Adams
    Abstract Although growing consensus supports the role of deficient behavioral inhibition as a central feature of the combined subtype of ADHD (ADHD/C; Barkley 1997 Psychol Bull 121:65,94; Nigg 2001 Psychol Bull 127:571,598), little research has focused on how this finding generalizes to the primarily inattentive subtype (ADHD/I). This question holds particular relevance in light of recent work suggesting that ADHD/I might be better characterized as a disorder separate from ADHD/C (Diamond 2005 Dev Psychopathol 17:807,825; Milich et al. 2001 Clin Psychol Sci Pract 8:463,488). This article describes major findings in the area of inhibitory performance in ADHD and highlights recent research suggesting important areas of divergence between the subtypes. In particular, preliminary findings point to potential differences between the subtypes with respect to how children process important contextual information from the environment, such as preparatory cues that precede responses and rewarding or punishing feedback following behavior. These suggestive findings are discussed in the context of treatment implications, which could involve differential intervention approaches for each subtype targeted to the specific deficit profiles that characterize each group of children. Future research avenues aimed toward building a sound theoretical model of ADHD/I and a better understanding of its relation to ADHD/C are also presented. Specifically, investigators are encouraged to continue studying the complex interplay between inhibitory and attentional processes, as this area seems particularly promising in its ability to improve our understanding of the potentially distinct pathologies underlying the ADHD subtypes. © 2008 Wiley-Liss, Inc. Dev Disabil Res Rev 2008;14:268,275. [source]


    Developmental shift in bidirectional functions of taurine-sensitive chloride channels during cortical circuit formation in postnatal mouse brain

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2004
    Mika Yoshida
    Abstract Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in the developing mammalian cerebral cortex, however, few studies have reported its neurobiological functions during development. In this study, by means of whole-cell patch-clamp recordings, we examined the effects of taurine on chloride channel receptors in neocortical neurons from early to late postnatal stages, which cover a critical period in cortical circuit formation. We show here that taurine activates chloride channels in cortical neurons throughout the postnatal stages examined (from postnatal day 2 to day 36). The physiological effects of taurine changed from excitatory to inhibitory due to variations in the intracellular Cl, concentration during development. An antagonist blocking analysis also demonstrated a developmental shift in the receptor target of taurine, from glycine receptors to GABAA receptors. Taken together, these results may reflect genetically programmed, bidirectional functions of taurine. At the early developmental stage, taurine acting on glycine receptors would serve to promote cortical circuit formation. As cortical circuit has to be regulated in the later stages, taurine would serve as a safeguard against hyperexcitable circuit. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 166,175, 2004 [source]


    Binding characteristics of chondroitin sulfate proteoglycans and laminin-1, and correlative neurite outgrowth behaviors in a standard tissue culture choice assay

    DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2002
    Diane M. Snow
    Abstract Neuronal growth cones are capable of sophisticated discrimination of environmental cues, on cell surfaces and in the extracellular matrix, to accomplish navigation during development (generation) and following nervous system injury (regeneration). Choices made by growth cones are commonly examined using tissue culture paradigms in which molecules of interest are purified and substratum-bound. From observations of growth cone behaviors using these paradigms, assertions are made about choices neuronal growth cones may make in vivo. However, in many cases, the binding, interactions, and conformations of these molecules have not been determined. In the present study, we investigated the binding characteristics of two commonly studied outgrowth regulatory molecules: chondroitin sulfate proteoglycans (CSPGs), which are typically inhibitory to neurite outgrowth during development and following nervous system injury, and laminin, which is typically outgrowth promoting for many neuronal types. Using a novel combination of radiolabeling and quantitative fluorescence, we determined the precise concentrations of CSPGs and laminin-1 that were bound separately and together in a variety of choice assays. For identically prepared cultures, we correlated neurite outgrowth behaviors with binding characteristics. The data support our working hypothesis that neuronal growth cones are guided by the ratio of outgrowth-promoting to outgrowth-inhibiting influences in their environment, i.e., they summate local molecular cues. The response of growth cones to these molecular combinations is most likely mediated by integrins and subsequent activation of signal transduction cascades in growth cones. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 285,301, 2002 [source]


    The effects of acute exercise and high lactate levels on 35% CO2 challenge in healthy volunteers

    ACTA PSYCHIATRICA SCANDINAVICA, Issue 5 2002
    G. Esquivel
    Objective:, To test the possible antipanic effects of acute exercise in healthy volunteers exposed to an inhalation of 35% CO2 challenge. Method:, Twenty healthy subjects in a randomized separate group design, performed exercise in a bicycle ergometer reaching >6 mm of blood lactate and a control condition of minimal activity in the same fashion with no lactate elevation. Immediately afterwards an inhalation of a vital capacity using a mixture of 35% CO2/65% O2 through a mask was given on both conditions. Results:, Subjects under the exercise condition reported less panic symptoms than controls after a CO2 challenge on the diagnostic statistical manual-IV (DSM-IV) Panic Symptom List but no difference on the Visual Analogue Anxiety Scale. Conclusion:, Subjects under the exertion condition had lactate levels comparable with those of lactate infusions but an inhibitory rather than accumulative effect was seen when combined with a CO2 challenge. [source]


    Dual enantioselective effect of the insecticide bifenthrin on locomotor behavior and development in embryonic,larval zebrafish

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2010
    Meiqing Jin
    Abstract Bifenthrin (BF) is a synthetic pyrethroid that targets the nervous system of insects and may have adverse effects on the behavior and development of nontarget organisms. However, no reports have been issued on the effects of different enantiomers on locomotor behavior for synthetic pyrethroids (SPs) in zebrafish, and whether locomotor activity is associated with the developmental toxicities remains unclear. In this study, enantioselectivity of BF (1S and 1R) on the acute locomotor activity and developmental toxicities of embryonic,larval zebrafish were first evaluated. The results indicated that 1R -BF was more toxic, causing morphological impairments, with a 96-h median effective concentration (EC50) of 226,µg/L for pericardial edema and 145,µg/L for curved body axis. Administration of 20,µg/L of one enantiomer of BF had differential effects on the locomotor activity of zebrafish larvae at 4 d postfertilization (dpf) under alternating light and dark conditions. Larvae treated with 1R -BF were not sensitive to the alteration of light to dark, and the locomotor activities were reduced to a level similar to that observed in light, which otherwise increased rapidly and markedly. However, 1S -BF did not alter the general pattern of zebrafish response to the light or dark compared with the control. The results demonstrated that the differential effects on development might have contributed to the enantioselectivity in the locomotor activity. The consistency of enantioselectivity with insecticidal activity may also indicate a common mode of action. Furthermore, 1R -BF accelerated the spontaneous movement and hatching process, whereas 1S -BF seemed to be inhibitory. The results suggest the need to link behavioral changes to developmental toxicities in order to achieve more comprehensive health risk assessments of chiral pesticides. Environ. Toxicol. Chem. 2010;29:1561,1567. © 2010 SETAC [source]


    Effect of byproducts from the ozonation of pyrene: Biphenyl-2,2,,6,6,-tetracarbaldehyde and biphenyl-2,2,,6,6,-tetracarboxylic acid on gap junction intercellular communication and neutrophil function

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2005
    Stephanie L. Luster-Teasley
    Abstract In this study, biphenyl-2,2,,6,6,-tetracarbaldehyde, an initial by product formed from the ozonation of pyrene, and biphenyl-2,2,,6,6,-tetracarboxylic acid, a subsequent pyrene ozonation byproduct, were evaluated using two toxicology assays to compare the toxicity of ozonation byproducts with that of the parent compound. The first assay measured the potential for the compounds to block gap junctional intercellular communication (GJIC) using the scrape loading/dye transfer technique in normal WB-344 rat liver epithelial cells. The second assay evaluated the ability of the compounds to affect neutrophil function by measuring the production of superoxide in a human cell line (HL-60). Pyrene significantly blocked intercellular communication (f= 0.2,0.5) at 40 ,M and complete inhibition of communication (f < 0.2) occurred at 50 ,M. Gap junctional intercellular communication in cells exposed to biphenyl-2,2,,6,6,-tetracarbaldehyde reached f < 0.5 at a concentration of 15 ,M. At concentrations greater than 20 ,M, biphenyl-2,2,,6,6,-tetracarbaldehyde was cytotoxic and the inhibition of GJIC was caused by cell death. Biphenyl-2,2,,6,6,-tetracarboxylic acid was neither cytotoxic nor inhibitory to GJIC at the concentrations tested (10,500 ,M). Exposure to biphenyl-2,2,,6,6,-tetracarbaldehyde resulted in a concentration-dependent decrease in phorbol 12-myristate 13-acetate,stimulated O12 production. Neither exposure to pyrene nor biphenyl-2,2,,6,6,-tetracarboxylic acid caused a significant toxic effect on neutrophil function. [source]


    A Proton Magnetic Resonance Spectroscopy Study of Metabolites in the Occipital Lobes in Epilepsy

    EPILEPSIA, Issue 4 2003
    Robert J. Simister
    Summary: ,Purpose: ,-Amino butyric acid (GABA) and glutamate, respectively the principal inhibitory and excitatory neurochemicals in the brain, are visible to proton magnetic resonance spectroscopy (MRS). We report a study of GABA+ (GABA plus homocarnosine) and GLX (glutamate plus glutamine) concentrations in the occipital lobes in patients with idiopathic generalised epilepsy (IGE) and in patients with occipital lobe epilepsy (OLE). Methods: Fifteen patients with IGE, 15 patients with OLE, and 15 healthy volunteers were studied. A single voxel was prescribed in the occipital lobes for each subject. PRESS localised short-echo-time MRS was performed to measure GLX by using LCModel. A double quantum GABA filter was used to measure GABA+. Segmented T1 -weighted images gave the tissue composition of the prescribed voxel. Results: Grey-matter proportion, GLX, and GABA+ were all elevated in IGE. However, analysis using grey-matter proportion as a covariable showed no significant group differences. No correlation was observed between GABA+ concentration and either seizure frequency or time since last seizure. Conclusions: GLX and GABA+ were elevated in IGE. Elevated grey-matter content in the IGE group despite normal MRI appearance can be expected to account for some or all of this observed elevation of GLX and GABA+. GABA+ concentration did not correlate with seizure control or duration since most recent seizure. [source]


    Characterization of Neuronal Migration Disorders in Neocortical Structures: Loss or Preservation of Inhibitory Interneurons?

    EPILEPSIA, Issue 7 2000
    Petra Schwarz
    Summary: Purpose: Neuronal migration disorders (NMD) are often associated with therapy-resistant epilepsy. In human cerebral cortex, this hyperexcitability has been correlated with a loss of inhibitory interneurons. We used a rat model of focal cortical NMD (microgyria) to determine whether the expression of epileptiform activity in this model coincides with a decrease in inhibitory interneurons. Methods: In 2- to 4-month-old rats, the density of interneurons immunoreactive for ,-aminobutyric acid (GABA), cal-bindin, and parvalbumin was determined in fronto-parietal cortex in nine 200-,m-wide sectors located up to 2.5 mm lateral and 2.0 mm medial from the lesion center in primary parietal cortex (Par 1). Quantitative measurements in homotopic areas of age-matched sham-operated rats served as controls. Results: The freeze lesion performed in newborn rat cortex resulted in adult rats with a microgyrus extending in a rostro-caudal direction from frontal to occipital cortex. The density of GABA- and parvalbumin-positive neurons in fronto-parietal cortex was not significantly different between lesioned and control animals. Only the density of calbindin-immunoreactive neurons located 1.0 mm lateral and 0.5 mm medial from the lesion was significantly (Student t test, p > 0.05) larger in freeze-lesioned rats (5.817 ± 562 and 6,400 ± 795 cells per mm3, respectively; n = 12) compared with measurements in homotopic regions in Parl cortex of controls (4,507 ± 281 and 4,061 ± 319 cells per mm3, respectively; n = 5). Conclusions: The previously reported widespread functional changes in this model of cortical NMD are not related to a general loss of inhibitory interneurons. Other factors, such as a decrease in GABA receptor density, modifications in GABAA receptor subunit composition, or alterations in the excitatory network, e.g., an increase in the density of calbindin-immunoreactive pyramidal cells, more likely contribute to the global disinhibition and widespread expression of pathophysiological activity in this model of cortical NMD. [source]


    Natural killer cells in viral hepatitis: facts and controversies

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 9 2010
    Mario U. Mondelli
    Eur J Clin Invest 2010; 40 (9): 851,863 Abstract Background, Hepatitis B virus (HBV) and hepatitis C virus (HCV) are major human hepatotropic pathogens responsible for a large number of chronic infections worldwide. Their persistence is thought to result from inefficiencies of innate and adaptive immune responses; however, very little information is available on the former. Natural killer (NK) cells are a major component of innate immunity and their activity is tightly regulated by several inhibitory and activating receptors. Design, In this review, we examine controversial findings regarding the role of NK cells in the pathogenesis of acute and chronic liver disease caused by HCV and HBV. Results, Recent studies built up on technical advances to identify NK receptors and their functional correlates in this setting. While NK cells seem to behave correctly during acute hepatitis, it would appear that the NK cytotoxic potential is generally conserved in chronic hepatitis, if not increased in the case of HCV. In contrast, their ability to secrete antiviral cytokines such as interferon ex vivo or after cytokine stimulation is severely impaired. Conclusions, Current evidence suggests the existence of an NK cell functional dichotomy, which may contribute to virus persistence, while maintaining low-level chronic liver inflammation. The study of liver-infiltrating NK cells is still at the very beginning, but it is likely that it will shed more light on the role of this simple and at the same time complex innate immune cell in liver disease. [source]


    Severe functional impairment and elevated PD-1 expression in CD1d-restricted NKT cells retained during chronic HIV-1 infection

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2009
    Markus Moll
    Abstract Invariant CD1d-restricted NKT cells play important roles in regulating both innate and adaptive immunity. They are targeted by HIV-1 infection and severely reduced in number or even lost in many infected subjects. Here, we have investigated the characteristics of NKT cells retained by some patients despite chronic HIV-1 infection. NKT cells preserved under these circumstances displayed an impaired ability to proliferate and produce IFN-, in response to CD1d-restricted lipid antigen as compared with cells from uninfected control subjects. HIV-1 infection was associated with an elevated expression of the inhibitory programmed death-1 (PD-1) receptor (CD279) on the CD4, subset of NKT cells. However, blocking experiments indicated that the functional defects in NKT cells were largely PD-1-independent. Furthermore, the elevated PD-1 expression and the functional defects were not restored by anti-retroviral treatment, and the NKT cell numbers in blood did not recover significantly in response to treatment. The functional phenotype of NKT cells in these patients suggests an irreversible immune exhaustion due to chronic activation in vivo. The data demonstrate a severe functional impairment in the remaining NKT-cell compartment in HIV-1-infected patients, which limits the prospects to mobilize these cells in immunotherapy approaches in patients. [source]


    Activating and inhibitory Fc, receptors can differentially modulate T cell-mediated autoimmunity

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2008
    Mirentxu
    Abstract The molecular bases responsible for the loss of T cell tolerance to myelin antigens leading to the onset of multiple sclerosis remain obscure. It has been shown that balanced signaling through activating and inhibitory receptors is critical for the maintenance of tolerance to self antigens in autoimmune disorders. However, although Fc,R have been shown to influence experimental autoimmune encephalomyelitis (EAE) development, their role during pathogenesis remains controversial. Here we have evaluated whether relative expression of activating (Fc,RIII) and inhibitory (Fc,RIIb) Fc,R can modulate myelin-specific T cell response, as well as the susceptibility to develop EAE in mice. While Fc,RIIb,/, mice showed a significant increase in EAE severity, an Fc,RIII deficiency protected mice from disease. In addition, Fc,RIIb,/, mice showed enhanced activation of myelin-specific effector T cells, which were significantly more effective at causing EAE in adoptive transfer experiments than were T cells from wild-type mice. In contrast, Fc,RIII,/, mice showed a significantly reduced activation of myelin-specific T cells and these cells failed to adoptively transfer EAE. Consistently, increased expansion of regulatory T cells (Treg) during EAE was observed only for Fc,RIII,/, mice, which were able to suppress disease when adoptively transferred to recipient mice. These findings suggest that the balance between activating and inhibitory Fc,R signaling can contribute to the maintenance of T cell tolerance to myelin antigens and modulate EAE progression. [source]


    Manipulation of NK cytotoxicity by the IAP family member Livin

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2007
    Boaz Nachmias
    Abstract Natural killer (NK) cells are part of the innate immune system, capable of killing tumor and virally infected cells. NK cells induce apoptosis in the target cell by either granule- or receptor-mediated pathways. A set of inhibitory and activation ligands governs NK cell activation. As transformed cells often attempt to evade NK cell killing, up-regulation of a potential anti-apoptotic factor should provide a survival advantage. The inhibitor of apoptosis protein (IAP) family can inhibit apoptosis induced by a variety of stimuli. We have previously described a new IAP family member, termed Livin, which has two splice variants (, and ,) with differential anti-apoptotic activities. In this study, we explore the ability of Livin to inhibit NK cell-induced killing. We demonstrate that Livin,, moderately protects against NK cell killing whereas Livin,, augments killing. We show that Livin,, inhibition in Jurkat cells is apparent upon concomitant activation of an inhibitory signal, suggesting that Livin augments an extrinsic inhibitory signal rather than functioning as an independent inhibitory mechanism. Finally, we demonstrate that detection of both Livin isoforms in melanoma cells correlates with a low killing rate. To date, this is the first evidence that directly demonstrates the ability of IAP to protect against NK cell-induced apoptosis. [source]


    The pathophysiology of spasticity

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 2002
    G. Sheean
    Spasticity is only one of several components of the upper motor neurone (UMN) syndrome, known collectively as the `positive' phenomena, that are characterized by muscle overactivity. Other components include tendon hyper-reflexia, clonus, the clasp-knife phenomenon, flexor and extensor spasms, a Babinski sign, and spastic dystonia. Spasticity is a form of hypertonia due to hyperexcitable tonic stretch reflexes. It is distinguished from rigidity by its dependence upon the speed of the muscle stretch and by the presence of other positive UMN signs. Hyperactive spinal reflexes mediate most of these positive phenomena, while others are due to disordered control of voluntary movement or abnormal efferent drive. An UMN lesion disturbs the balance of supraspinal inhibitory and excitatory inputs, producing a state of net disinhibition of the spinal reflexes. These include proprioceptive (stretch) and nociceptive (flexor withdrawal and extensor) reflexes. The clinical syndrome resulting from an UMN lesion depends more upon its location and extent, and the time since it occurred, than on the pathology of the lesion. However, the change in spinal reflex excitability cannot simply be due to an imbalance in supraspinal control. The delayed onset after the lesion and the frequent reduction in reflex excitability over time, suggests plasticity in the central nervous system. Knowledge of the electrophysiology and neurochemistry of spinal reflexes, together with the action of antispasticity drugs, helps us to understand the pathophysiology of spasticity. [source]


    Cannabinoid modulation of limbic forebrain noradrenergic circuitry

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2010
    Ana F. Carvalho
    Abstract Both the endocannabinoid and noradrenergic systems have been implicated in neuropsychiatric disorders. Importantly, low levels of norepinephrine are seen in patients with depression, and antagonism of the cannabinoid receptor type 1 (CB1R) is able to induce depressive symptoms in rodents and humans. Whether the interaction between the two systems is important for the regulation of these behaviors is not known. In the present study, adult male Sprague,Dawley rats were acutely or chronically administered the CB1R synthetic agonist WIN 55,212-2, and ,2A and ,1 adrenergic receptors (AR) were quantified by Western blot. These AR have been shown to be altered in a number of psychiatric disorders and following antidepressant treatment. CB1R agonist treatment induced a differential decrease in ,2A- and ,1-ARs in the nucleus accumbens (Acb). Moreover, to assess long-lasting changes induced by CB1R activation, some of the chronically treated rats were killed 7 days following the last injection. This revealed a persistent effect on ,2A-AR levels. Furthermore, the localization of CB1R with respect to noradrenergic profiles was assessed in the Acb and in the nucleus of the solitary tract (NTS). Our results show a significant topographic distribution of CB1R and dopamine beta hydroxylase immunoreactivities (ir) in the Acb, with higher co-localization observed in the NTS. In the Acb, CB1R-ir was found in terminals forming either symmetric or asymmetric synapses. These results suggest that cannabinoids may modulate noradrenergic signaling in the Acb, directly by acting on noradrenergic neurons in the NTS or indirectly by modulating inhibitory and excitatory input in the Acb. [source]


    Neuronal activity in the subthalamic nucleus modulates the release of dopamine in the monkey striatum

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009
    Yasushi Shimo
    Abstract The primate subthalamic nucleus (STN) is commonly seen as a relay nucleus between the external and internal pallidal segments, and as an input station for cortical and thalamic information into the basal ganglia. In rodents, STN activity is also known to influence neuronal activity in the dopaminergic substantia nigra pars compacta (SNc) through inhibitory and excitatory mono- and polysynaptic pathways. Although the anatomical connections between STN and SNc are not entirely the same in primates as in rodents, the electrophysiologic and microdialysis experiments presented here show directly that this functional interaction can also be demonstrated in primates. In three Rhesus monkeys, extracellular recordings from SNc during microinjections into the STN revealed that transient pharmacologic activation of the STN by the acetylcholine receptor agonist carbachol substantially increased burst firing of single nigral neurons. Transient inactivation of the STN with microinjections of the GABA-A receptor agonist muscimol had the opposite effect. While the firing rates of individual SNc neurons changed in response to the activation or inactivation of the STN, these changes were not consistent across the entire population of SNc cells. Permanent lesions of the STN, produced in two animals with the fiber-sparing neurotoxin ibotenic acid, reduced burst firing and firing rates of SNc neurons, and substantially decreased dopamine levels in the primary recipient area of SNc projections, the striatum, as measured with microdialysis. These results suggest that activity in the primate SNc is prominently influenced by neuronal discharge in the STN, which may thus alter dopamine release in the striatum. [source]


    GABAergic projections from the hippocampus to the retrosplenial cortex in the rat

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007
    Toshio Miyashita
    Abstract The retrosplenial cortex (RS) in rats has been implicated in a wide range of behaviors, including spatial navigation and memory. Relevant to this, the RS is closely interconnected with the hippocampus by multiple direct and indirect routes. Here, by injecting the retrograde tracer cholera toxin subunit B conjugated with Alexa488 (CTB-Alexa488) in the granular retrosplenial cortex (GRS), we demonstrate a moderately dense non-pyramidal projection from CA1. Neurons are in several layers, but mainly (about 65%) at the border of the stratum radiatum (SR) and stratum lacunosum moleculare (SLM). In particular, by double-labeling with GAD67 or ,-aminobutyric acid (GABA), we establish that these neurons are GABAergic. Further immunocytochemical screening for calcium-binding proteins, somatostatin (SS) or cholecystokinin (CCK) failed to identify additional neurochemical subgroups; but a small subset (about 14%) is positive for the m2 muscarinic acetylcholine receptor (M2R). Terminations target layer 1 of the GRS, as shown by biotinylated dextran amine (BDA) injections into CA1 and confirmed by a very superficial injection of CTB-Alexa488 in GRS. The superficial injection shows that there is a sparse GABAergic projection from the subiculum to layer 1 of the GRS, in addition to the dense excitatory connections to layer 3. The role of these dual inhibitory,excitatory pathways , within the subiculum, and in parallel from CA1 and the subiculum , remains to be determined, but may be related to synchronized oscillatory activity in the hippocampal complex and GRS, or to the generation of rhythmic activity within the GRS. [source]


    Spontaneous recurrent network activity in organotypic rat hippocampal slices

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2005
    Majid H. Mohajerani
    Abstract Organotypic hippocampal slices were prepared from postnatal day 4 rats and maintained in culture for >6 weeks. Cultured slices exhibited from 12 days in vitro spontaneous events which closely resembled giant depolarizing potentials (GDPs) recorded in neonatal hippocampal slices. GDP-like events occurred over the entire hippocampus with a delay of 30,60 ms between two adjacent regions as demonstrated by pair recordings from CA3,CA3, CA3,CA1 and interneurone,CA3 pyramidal cells. As in acute slices, spontaneous recurrent events were generated by the interplay of GABA and glutamate acting on AMPA receptors as they were reversibly blocked by bicuculline and 6,7-dinitroquinoxaline-2,3-dione but not by dl -2-amino-5-phosphonopentaoic acid. The equilibrium potentials for GABA measured in whole cell and gramicidin-perforated patch from interconnected interneurones,CA3 pyramidal cells were ,70 and ,56 mV, respectively. The resting membrane potential estimated from the reversal of N -methyl- d -aspartate-induced single-channel currents in cell-attach experiments was ,75 mV. In spite of its depolarizing action, in the majority of cases GABA was still inhibitory as it blocked the firing of principal cells. The increased level of glutamatergic connectivity certainly contributed to network synchronization and to the development of interictal discharges after prolonged exposure to bicuculline. In spite of its inhibitory action, in a minority of cells GABA was still depolarizing and excitatory as it was able to bring principal cells to fire, suggesting that a certain degree of immaturity is still present in cultured slices. This was in line with the transient bicuculline-induced block of GDPs and with the isoguvacine-induced increase of GDP frequency. [source]


    The contribution of activated phagocytes and myelin degeneration to axonal retraction/dieback following spinal cord injury

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2004
    Lowell T. McPhail
    Abstract Myelin-derived molecules inhibit axonal regeneration in the CNS. The Long,Evans Shaker rat is a naturally occurring dysmyelinated mutant, which although able to express the components of myelin lacks functional myelin in adulthood. Given that myelin breakdown exposes axons to molecules that are inhibitory to regeneration, we sought to determine whether injured dorsal column axons in a Shaker rat would exhibit a regenerative response absent in normally myelinated Long,Evans (control) rats. Although Shaker rat axons did not regenerate beyond the lesion, they remained at the caudal end of the crush site. Control rat axons, in contrast, retracted and died back from the edge of the crush. The absence of retraction/dieback in Shaker rats was associated with a reduced phagocytic reaction to dorsal column crush around the caudal edge of the lesion. Systemic injection of minocycline, a tetracycline derivative, in control rats reduced both the macrophage response and axonal retraction/dieback following dorsal column injury. In contrast, increasing macrophage activation by spinal injection of the yeast particulate zymosan had no effect on axonal retraction/dieback in Shaker rats. Schwann cell invasion was reduced in minocycline-treated control rats compared with untreated control rats, and was almost undetectable in Shaker rats, suggesting that like axonal retraction/dieback, spinal Schwann cell infiltration is dependent upon macrophage-mediated myelin degeneration. These results indicate that following spinal cord injury the phagocyte-mediated degeneration of myelin and subsequent exposure of inhibitory molecules to the injured axons contributes to their retraction/dieback. [source]


    Hormonal enhancement of neuronal firing is linked to structural remodelling of excitatory and inhibitory synapses

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2002
    A. Parducz
    Abstract The ovarian hormone estradiol induces morphological changes in the number of synaptic inputs in specific neuronal populations. However, the functional significance of these changes is still unclear. In this study, the effect of estradiol on the number of anatomically identified synaptic inputs has been assessed in the hypothalamic arcuate nucleus. The number of axo-somatic, axodendritic and spine synapses was evaluted using unbiased stereological methods and a parallel electrophysiological study was performed to assess whether synaptic anatomical remodelling has a functional consequence on the activity of the affected neurons. Estradiol administration to ovariectomized rats induced a decrease in the number of inhibitory synaptic inputs, an increase in the number of excitatory synapses and an enhancement of the frequency of neuronal firing. These results indicate that oestrogen modifications in firing frequency in arcuate neurons are temporally linked to anatomical modifications in the numerical balance of inhibitory and excitatory synaptic inputs. [source]


    Modulation by adenosine of both muscarinic M1 -facilitation and M2 -inhibition of [3H]-acetylcholine release from the rat motor nerve terminals

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2002
    Laura Oliveira
    Abstract The crosstalk between adenosine and muscarinic autoreceptors regulating evoked [3H]-acetylcholine ([3H]-ACh) release was investigated on rat phrenic nerve-hemidiaphragm preparations. Motor nerve terminals possess facilitatory M1 and inhibitory M2 autoreceptors that can be activated by McN-A-343 (1,30 µm) and oxotremorine (0.3,100 µm), respectively. The muscarinic receptor antagonist, dicyclomine (3 nm,10 µm), caused a biphasic (inhibitory/facilitatory) effect, indicating that M1 -facilitation prevails during 5 Hz stimulation trains. Concomitant activation of AF,DX 116-sensitive M2 receptors was partially attenuated, as pretreatment with M1 antagonists, muscarinic toxin 7 (MT-7, 0.1 nm) and pirenzepine (1 nm), significantly enhanced inhibition by oxotremorine. Activation of A2A -adenosine receptors with CGS 21680C (2 nm) (i) potentiated oxotremorine inhibition, and (ii) shifted McN-A-343-induced facilitation into a small inhibitory effect. Conversely, the A1 -receptor agonist, R- N6 -phenylisopropyl adenosine (R-PIA, 100 nm), attenuated the inhibitory effect of oxotremorine, without changing facilitation by McN-A-343. Synergism between A2A and M2 receptors is regulated by a reciprocal interaction with facilitatory M1 receptors, which may be prevented by pirenzepine (1 nm). During 50 Hz-bursts, facilitation (M1) of [3H]-ACh release by McN-A-343 disappeared, while the inhibitory (M2) effect of oxotremorine became predominant. This muscarinic shift results from the interplay with A2A receptors, as it was precluded by the selective A2A receptor antagonist, ZM 241385 (10 nm). In conclusion, when the muscarinic M1 positive feedback loop is fully operative, negative regulation of ACh release is mediated by adenosine A1 receptors. During high frequency bursts, tonic activation of A2A receptors promotes M2 autoinhibition by braking the M1 receptor operated counteraction. [source]


    Phase-coupled oscillator models can predict hippocampal inhibitory synaptic connections

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2001
    F. K. Skinner
    Abstract What factors are responsible for propagating electrical activity in the hippocampus? Using an intact, isolated hippocampus preparation, it is possible to observe spontaneous delta (, 4 Hz) waves of rhythmic field potentials. These rhythmic potentials are inhibitory in nature, mediated by GABAergic inhibitory potentials originating from a population of principal neurons. They start in the ventro-temporal region and move longitudinally towards the dorso-septal region with a phase lag of , 10% between the extracellular recordings. We use the mathematical framework of phase-coupled oscillators (PCO) to gain some insight into the underlying network system. A chain of 15 nearest-neighbour bidirectionally coupled PCOs is used where each oscillator refers to a segment of the CA1 region of the hippocampus that can generate these slow field potentials. We find that ventro-dorsal delta waves exist if there is a dominance in coupling strength in one direction. Without a one-way coupling dominance, ventro-dorsal waves can still exist, but then the coupling strengths need to be much larger. The relationship between entrained and intrinsic frequencies and the variation of propagation speeds along the longitudinal axis can be used to determine which case applies. Currently available experimental data supports one of the cases, predicting that there is a stronger ventral to dorsal inhibitory effect. [source]


    Galanin knockout mice reveal nociceptive deficits following peripheral nerve injury

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2000
    Bradley J. Kerr
    Abstract The neuropeptide galanin has been identified as a potential neurotransmitter/neuromodulator within the central nervous system. In the present study, the role of endogenous galanin in nociceptive processing in the nervous system has been analysed by using mice carrying a targeted mutation in the galanin gene. Supporting this, the effect of chronic administration of exogenous galanin on nociceptive sensory inputs has been assayed in adult rats. In the absence of peripheral nerve injury, the sensitivity to threshold noxious stimuli is significantly higher in galanin mutant mice than wild-type controls. Following peripheral nerve injury, in conditions under which endogenous galanin levels are elevated, spontaneous and evoked neuropathic pain behaviours are compromised in mutant mice. Conversely, chronic intrathecal delivery of exogenous galanin to nerve-intact adult rats is associated with persistent behavioural hypersensitivity, a significant increase in c-fos expression and an increase in PKC, immunoreactivity within the spinal cord dorsal horn. The present results demonstrate that a relationship exists between the degree of nerve injury-induced galanin expression and the degree of behavioural hypersensitivity, and show that galanin may play a role in nociceptive processing in the spinal cord, with interrelated inhibitory and excitatory effects. [source]


    Diurnal rhythms in neurohypophysial function

    EXPERIMENTAL PHYSIOLOGY, Issue 2000
    Mary L. Forsling
    The neurohypophysial hormones oxytocin and vasopressin show daily rhythms of secretion with elevated hormone release during the hours of sleep. This pattern can be modulated by ovarian steroids and alters with age. The pattern appears to be due in part to the nocturnal increase in melatonin secretion, which stimulates hormone release in man, while being inhibitory in the rat. Pinealectomy alters both the 24 h pattern of neurohypophysial hormone release in the rat and the firing rate of magnocellular supraoptic nucleus neurones. There is also a reduced hormone release in response to hypovolaemia and raised plasma sodium concentration compared to sham operated animals, with a smaller increase in neuronal activity, as determined by immediate-early gene expression. The normal responses can be restored by nocturnal administration of melatonin. Melatonin also influences the neurohypophysial hormone response in the human to known stimuli of release, such as raised plasma osmolality, exercise and insulin-induced hypoglycaemia. Recent studies have revealed that not only does the release of vasopressin and oxytocin vary over each 24 h, but the respective renal and pregnant uterine responses also show diurnal variations. [source]


    Nonlysine-analog plasminogen modulators promote autoproteolytic generation of plasmin(ogen) fragments with angiostatin-like activity

    FEBS JOURNAL, Issue 4 2004
    Shigeki Ohyama
    We recently discovered several nonlysine-analog conformational modulators for plasminogen. These include SMTP-6, thioplabin B and complestatin that are low molecular mass compounds of microbial origin. Unlike lysine-analog modulators, which increase plasminogen activation but inhibit its binding to fibrin, the nonlysine-analog modulators enhance both activation and fibrin binding of plasminogen. Here we show that some nonlysine-analog modulators promote autoproteolytic generation of plasmin(ogen) derivatives with its catalytic domain undergoing extensive fragmentation (PMDs), which have angiostatin-like anti-endothelial activity. The enhancement of urokinase-catalyzed plasminogen activation by SMTP-6 was followed by rapid inactivation of plasmin due to its degradation mainly in the catalytic domain, yielding PMD with a molecular mass ranging from 68 to 77 kDa. PMD generation was observed when plasmin alone was treated with SMTP-6 and was inhibited by the plasmin inhibitor aprotinin, indicating an autoproteolytic mechanism in PMD generation. Thioplabin B and complestatin, two other nonlysine-analog modulators, were also active in producing similar PMDs, whereas the lysine analog 6-aminohexanoic acid was inactive while it enhanced plasminogen activation. Peptide sequencing and mass spectrometric analyses suggested that plasmin fragmentation was due to cleavage at Lys615-Val616, Lys651-Leu652, Lys661-Val662, Lys698-Glu699, Lys708-Val709 and several other sites mostly in the catalytic domain. PMD was inhibitory to proliferation, migration and tube formation of endothelial cells at concentrations of 0.3,10 µg·mL,1. These results suggest a possible application of nonlysine-analog modulators in the treatment of cancer through the enhancement of endogenous plasmin(ogen) fragment formation. [source]


    Composition and antifungal activity of essential oils isolated from Hypericum hyssopifolium and Hypericum heterophyllum

    FLAVOUR AND FRAGRANCE JOURNAL, Issue 1 2004
    A. Cakir
    Abstract The composition of the hydrodistilled essential oils obtained from the aerial parts of Hypericum hyssopifolium subsp. elongatum var. elongatum and H. heterophyllum Vent. were analysed by means of GC and GC,MS, and 66 compounds were determined in total. The oils showed remarkable differences in chemical composition. The oil of H. hyssopifolium, which is rich in monoterpenes, consists primarily of , -pinene (57.3%), , -pinene (9.0%), limonene (6.2%) and , -phellandrene (4.4%). The oil of H. heterophyllum was a complex mixture consisting mainly of sesquiterpenes (72.9% of the total oil). In this oil, isocaryophyllene (17.1%), , -pinene (11.6%), , -cadinene (9.5%), , -muurolene (8.2%), n -decane (5.8%), , -cadinene (5.5%) and , -caryophyllene (4.5%) were found to be major constituents. The two essential oils were tested for antifungal activity using microbial growth inhibition assays in vitro against 10 agricultural pathogenic fungi, which consisted of ,ve Fusarium species (F. oxysporum, F. culmorum, F. sambucinum, F. solani and F. acuminatum) and ,ve anastomosis groups of Rhizoctonia solani (AG-3, AG-4, AG-5, AG-9 and AG-11). In general, the oils showed moderate activity against several fungal species, viz F. acuminatum, AG-5 and AG-11. The most signi,cant results were obtained against AG-11 for H. heterophyllum oil. However, both oils increased the growth of some fungal species. In addition, the antifungal activity of 13 pure compounds identi,ed as major components in the essential oils of the Hypericum species studied were determined using microbial growth inhibition assays against the 10 fungal species mentioned above. Among these compounds, both , -caryophyllene oxide and , -terpineol were inhibitory to the growth of all fungi. Copyright © 2003 John Wiley & Sons, Ltd. [source]