Home About us Contact | |||
Inhibitor Verapamil (inhibitor + verapamil)
Selected AbstractsOverexpression and significance of prion protein in gastric cancer and multidrug-resistant gastric carcinoma cell line SGC7901/ADRINTERNATIONAL JOURNAL OF CANCER, Issue 2 2005Jingping Du Abstract In our previous work, cellular prion protein (PrPc) was identified as an upregulated gene in adriamycin-resistant gastric carcinoma cell line SGC7901/ADR compared to its parental cell line SGC7901. Here we investigate the expression of PrPc in gastric cancer and whether it was involved in multidrug resistance (MDR) of gastric cancer. We demonstrated that PrPc was ubiquitously expressed in gastric cancer cell lines and tissues. PrPc conferred resistance of both P-glycoprotein (P-gp)-related and P-gp-nonrelated drugs on SGC7901, which was accompanied by decreased accumulation and increased releasing amount of adriamycin in PrPc-overexpressing cell line. Inhibition of PrPc expression by antisense or RNAi technology could partially reverse multidrug-resistant phenotype of SGC7901/ADR. PrPc significantly upregulated the expression of the classical MDR-related molecule P-gp but not multidrug resistance associated protein and glutathione S-transferase pi. The PrPc-induced MDR could be partially reversed by P-gp inhibitor verapamil. PrPc could also suppress adriamycin-induced apoptosis and alter the expression of Bcl-2 and Bax, which might be another pathway contributing to PrPc-related MDR. The further study of the biological functions of PrPc may be helpful for understanding the mechanisms of occurrence and development of clinical gastric carcinoma and PrPc-related MDR and developing possible strategies to treat gastric cancer. [source] Validation of a differential in situ perfusion method with mesenteric blood sampling in rats for intestinal drug interaction profilingBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 5-6 2010Joachim Brouwers Abstract The present study explored the feasibility of a differential setup for the in situ perfusion technique with mesenteric cannulation in rats to assess drug interactions at the level of intestinal absorption. In contrast to the classic, parallel in situ perfusion setup, the differential approach aims to identify intestinal drug interactions in individual animals by exposing the perfused segment to a sequence of multiple conditions. First, the setup was validated by assessing the interaction between the P-glycoprotein (P-gp) inhibitor verapamil and the transport probes atenolol (paracellular transport), propranolol (transcellular) and talinolol (P-gp mediated efflux). While transport of atenolol and propranolol remained constant for the total perfusion time (2,h), a verapamil-induced increase in talinolol transport was observed within individual rats (between 3.2- and 5.2-fold). In comparison with the parallel setup, the differential in situ perfusion approach enhances the power to detect drug interactions with compounds that exhibit strong subject-dependent permeability. This was demonstrated by identifying an interaction between amprenavir and ketoconazole (P-gp and CYP3A inhibitor) in five out of seven rats (permeability increase between 1.9- and 4.2-fold), despite high inter-individual differences in intrinsic permeability for amprenavir. In combination with an increased throughput (up to 300%) and a reduced animal use (up to 50%), the enhanced power of the differential approach improves the utility of the biorelevant in situ perfusion technique with mesenteric blood sampling to elucidate the intestinal interaction profile of drugs and drug candidates. Copyright © 2010 John Wiley & Sons, Ltd. [source] Stimulation of fibroblast proliferation by neokyotorphin requires Ca2+ influx and activation of PKA, CaMK II and MAPK/ERKFEBS JOURNAL, Issue 2 2007Olga V. Sazonova Neokyotorphin [TSKYR, hemoglobin ,-chain fragment (137,141)] has previously been shown to enhance fibroblast proliferation, its effect depending on cell density and serum level. Here we show the dependence of the effect of neokyotorphin on cell type and its correlation with the effect of protein kinase A (PKA) activator 8-Br-cAMP, but not the PKC activator 4,-phorbol 12-myristate, 13-acetate (PMA). In L929 fibroblasts, the proliferative effect of neokyotorphin was suppressed by the Ca2+L -type channel inhibitors verapamil or nifedipine, the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N,N,N,,N, - tetraacetic acid acetoxymethyl ester, kinase inhibitors H-89 (PKA), KN-62 (Ca2+/calmodulin-dependent kinase II) and PD98059 (mitogen-activated protein kinase). The proliferative effect of 8-Br-cAMP was also suppressed by KN-62 and PD98059. PKC suppression (downregulation with PMA or inhibition with bisindolylmaleimide XI) did not affect neokyotorphin action. The results obtained point to a cAMP-like action for neokyotorphin. [source] Multidrug resistance,associated proteins are crucial for the viability of activated rat hepatic stellate cells,,HEPATOLOGY, Issue 2 2008Rebekka A. Hannivoort Hepatic stellate cells (HSCs) survive and proliferate in the chronically injured liver. ATP-binding cassette (ABC) transporters play a crucial role in cell viability by transporting toxic metabolites or xenobiotics out of the cell. ABC transporter expression in HSCs and its relevance to cell viability and/or activation have not been reported so far. The aim of this study was to investigate the expression, regulation, and function of multidrug resistance,associated protein (Mrp)-type and multidrug resistance protein (Mdr),type ABC transporters in activated rat HSCs. Rat HSCs were exposed to cytokines or oxidative stress. ABC transporter expression was determined by quantitative polymerase chain reaction and immunohistochemistry. HSCs were exposed to the Mdr inhibitors verapamil and PSC-833 and the Mrp inhibitor MK571. Mdr and Mrp transporter function was evaluated with flow cytometry. Apoptosis was determined by activated caspase-3 and acridine orange staining, and necrosis was determined by Sytox green nuclear staining. An in vivo model of carbon tetrachloride (CCl4),induced liver fibrosis was used. With respect to hepatocytes, activated HSCs expressed high levels of Mrp1 and comparable levels of Mrp3, Mrp4, Mdr1a, and Mdr1b but not the hepatocyte-specific transporters bile salt export pump, Mrp2, and Mrp6. Mrp1 protein staining correlated with desmin staining in livers from CCl4 -treated rats. Mrp1 expression increased upon activation of HSCs. Cytokines induced Mdr1b expression only. Oxidative stress was not a major regulator of Mdr and Mrp transporter expression. Activated HSCs became necrotic when exposed to the Mrp inhibitors. Conclusion: Activated HSCs contain relatively high levels of Mrp1. Mrp-type transporters are required for the viability of activated HSCs. Mrp-dependent export of endogenous metabolites is important for the survival of activated HSCs in chronic liver diseases. (HEPATOLOGY 2008.) [source] |