Home About us Contact | |||
Inhibitor Sensitivity (inhibitor + sensitivity)
Selected AbstractsConservation and dispersion of sequence and function in fungal TRK potassium transporters: focus on Candida albicansFEMS YEAST RESEARCH, Issue 2 2009Manuel Miranda Abstract TRK proteins , essential potassium (K+) transporters in fungi and bacteria, as well as in plants , are generally absent from animal cells, which makes them potential targets for selective drug action. Indeed, in the human pathogen Candida albicans, the single TRK isoform (CaTrk1p) has recently been demonstrated to be required for activity of histidine-rich salivary antimicrobial peptides (histatins). Background for a detailed molecular investigation of TRK-protein design and function is provided here in sequence analysis and quantitative functional comparison of CaTrk1p with its better-known homologues from Saccharomyces cerevisiae. Among C. albicans strains (ATCC 10261, SC5314, WO-1), the DNA sequence is essentially devoid of single nucleotide polymorphisms in regions coding for evolutionarily conserved segments of the protein, meaning the four intramembranal [membrane,pore,membrane (MPM)] segments thought to be involved directly with the conduction of K+ ions. Among 48 fungal (ascomycete) TRK homologues now described by complete sequences, clades (but not the detailed order within clades) appear conserved for all four MPM segments, independently assessed. The primary function of TRK proteins, ,active' transport of K+ ions, is quantitatively conserved between C. albicans and S. cerevisiae. However, the secondary function, chloride efflux channeling, is present but poorly conserved between the two species, being highly variant with respect to activation velocity, amplitude, flickering (channel-like) behavior, pH dependence, and inhibitor sensitivity. [source] Activation of ERK signaling upon alternative protease nexin-1 internalization mediated by syndecan-1JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2006Xiaobiao Li Abstract Protease nexin-1 (PN-1), an inhibitor of serine proteases, contributes to tissue homeostasis and influences the behavior of some tumor cells. The internalization of PN-1 protease complexes is considered to be mediated by the low-density lipoprotein receptor related protein 1 (LRP1). In this study, both wild-type and LRP1,/, mouse embryonic fibroblasts (MEF) were shown to internalize PN-1. Receptor associated protein (RAP) interfered with PN-1 uptake only in wild-type MEF cells, indicating that another receptor mediates PN-1 uptake in the absence of LRP1. In LRP1,/, MEF cells, inhibitor sensitivity and kinetic values (t1/2 at 45 min) of PN-1 uptake showed a similarity to syndecan-1-mediated endocytosis. In these cells, PN-1 uptake was increased by overexpression of full-length syndecan-1 and decreased by RNA interference targeting this proteoglycan. Most important, in contrast to PKA activation known to be triggered by LRP1-mediated internalization, our study shows that syndecan-1-mediated internalization of PN-1 stimulated the Ras-ERK signaling pathway. J. Cell. Biochem. 99: 936,951, 2006. © 2006 Wiley-Liss, Inc. [source] Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1THE PLANT JOURNAL, Issue 2 2005Markus Geisler Summary Directional transport of the phytohormone auxin is required for the establishment and maintenance of plant polarity, but the underlying molecular mechanisms have not been fully elucidated. Plant homologs of human multiple drug resistance/P-glycoproteins (MDR/PGPs) have been implicated in auxin transport, as defects in MDR1 (AtPGP19) and AtPGP1 result in reductions of growth and auxin transport in Arabidopsis (atpgp1, atpgp19), maize (brachytic2) and sorghum (dwarf3). Here we examine the localization, activity, substrate specificity and inhibitor sensitivity of AtPGP1. AtPGP1 exhibits non-polar plasma membrane localization at the shoot and root apices, as well as polar localization above the root apex. Protoplasts from Arabidopsis pgp1 leaf mesophyll cells exhibit reduced efflux of natural and synthetic auxins with reduced sensitivity to auxin efflux inhibitors. Expression of AtPGP1 in yeast and in the standard mammalian expression system used to analyze human MDR-type proteins results in enhanced efflux of indole-3-acetic acid (IAA) and the synthetic auxin 1-naphthalene acetic acid (1-NAA), but not the inactive auxin 2-NAA. AtPGP1-mediated efflux is sensitive to auxin efflux and ABC transporter inhibitors. As is seen in planta, AtPGP1 also appears to mediate some efflux of IAA oxidative breakdown products associated with apical sites of high auxin accumulation. However, unlike what is seen in planta, some additional transport of the benzoic acid is observed in yeast and mammalian cells expressing AtPGP1, suggesting that other factors present in plant tissues confer enhanced auxin specificity to PGP-mediated transport. [source] GM3 synthase gene is a novel biomarker for histological classification and drug sensitivity against epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancerCANCER SCIENCE, Issue 10 2007Mariko Noguchi Expression of gangliosides and alterations in their composition have been observed during cell proliferation and differentiation and in certain cell cycle phases, brain development and cancer malignancy. To investigate the characteristics of GM3 synthase, SAT-I mRNA and ganglioside GM3 expression levels in lung cancer, we examined the expression levels of SAT-I mRNA as well as GM3 in 40 tumor tissues surgically removed from non-small cell lung cancer patients. Adenocarcinoma tissues expressed SAT-I mRNA levels that were significantly higher than those of squamous and other carcinomas (P < 0.0001). Moreover, the SAT-I mRNA levels were high in the bronchioalveolar carcinoma subtype and low in the solid and mucin subtypes of adenocarcinomas (P = 0.049, 0.049 and 0.013, respectively). To clarify the relationship between SAT-I mRNA and epidermal growth factor receptor (EGFR)-tyrosine kinase (TK) inhibitor sensitivity, we carried out drug sensitivity tests for the EGFR-TK inhibitors gefitinib and AG1478 using eight adenocarcinoma cell lines expressing no EGFR mutations. The IC50 values for gefitinib and AG1478 decreased dramatically with increasing SAT-I mRNA levels (R2 = 0.81 and 0.59, respectively), representing a wide range of drug sensitivities among adenocarcinoma cell lines. To explore a possible mechanism of how GM3 could enhance the sensitivity to EGFR-TK inhibitors, the SAT-I gene was introduced stably into a GM3-negative clone of murine 3LL lung cancer cells to produce GM3-reconstituted clones. We found an increase in EGFR protein levels and gefitinib sensitivity in GM3-reconstituted cells, suggesting the involvement of GM3 in the turnover of EGFR protein. Therefore, it is highly expected that, by measuring the expression levels of SAT-I mRNA in lung biopsy samples from non-small cell lung cancer patients, enhanced pathological identification and individualized chemotherapeutic strategies can be established for the appropriate use of EGFR-TK inhibitors. (Cancer Sci 2007; 98: 1625,1632) [source] Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancerCANCER SCIENCE, Issue 12 2007Tetsuya Mitsudomi Recent discovery of mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene in lung adenocarcinoma greatly stimulated biomarker research on predictive factors for EGFR tyrosine kinase inhibitors (TKI), such as gefitinib and erlotinib. Although patients with activating mutations of the EGFR generally respond to EGFR TKIs very well, it is natural to assume that there is no sole determinant, considering great complexity and redundancy of the EGFR pathway. Subsequently, roles of different types of EGFR mutations or mutations of genes that are members of the EGFR pathway such as KRAS and HER2 have been evaluated. In this review, we summarize the recent findings about how mutations of the EGFR and related genes affect sensitivity to EFGR-TKIs. We also discuss molecular mechanisms of acquired resistance to EGFR-TKIs that is almost inevitable in EGFR-TKI therapy. The door for genotype-based treatment of lung cancer is beginning to open, and through these efforts, it will be possible to slow the progression of lung cancer and eventually, to decrease mortality from lung cancer. (Cancer Sci 2007; 98: 1817,1824) [source] |