Inhibitor Protein (inhibitor + protein)

Distribution by Scientific Domains


Selected Abstracts


Fibrinogen-CD11b/CD18 interaction activates the NF-,B pathway and delays apoptosis in human neutrophils

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2003
Carolina Rubel
Abstract The regulation of neutrophil half-life by members of the coagulation cascade is critical for the resolution of the inflammatory response. We have demonstrated that soluble fibrinogen (sFbg) delays human neutrophil (PMN) apoptosis through a mechanism that involves CD11b interactions, and phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase,1/2 (ERK1/2). Since NF-,B is a key element in the regulation of apoptotic mechanisms in several immune cells, we investigated whether NF-,B is involved in the control of PMN survival by sFbg. We showthat sFbg triggers inhibitor protein ,B (I,B-,) degradation and NF-,B activation. Furthermore, pharmacological inhibition of NF-,B abrogates sFbg effects on apoptosis. In addition, specific inhibition of MAPK ERK1/2 significantly reduces NF-,B translocation by sFbg, suggesting a relationship between ERK1/2 and NF-,B activation. Similar results are obtained when granulocytic-differentiated HL-60 cells are treated with sFbg, making this model highly attractive for integrin-induced gene expression studies. It can be concluded that NF-,B participates in the prevention of apoptosis induced by sFbg with the participation of MAPK ERK1/2. These results shed light on the molecular mechanisms that control human granulocyte apoptosis, and suggest that NF-,B regulation may be of benefit for the resolution of the inflammatory response. [source]


HAEdb: A novel interactive, locus-specific mutation database for the C1 inhibitor gene,

HUMAN MUTATION, Issue 1 2005
Lajos Kalmár
Abstract Hereditary angioneurotic edema (HAE) is an autosomal dominant disorder characterized by episodic local subcutaneous and submucosal edema and is caused by the deficiency of the activated C1 esterase inhibitor protein (C1-INH or C1INH; approved gene symbol SERPING1). Published C1-INH mutations are represented in large universal databases (e.g., OMIM, HGMD), but these databases update their data rather infrequently, they are not interactive, and they do not allow searches according to different criteria. The HAEdb, a C1-INH gene mutation database (http://hae.biomembrane.hu) was created to contribute to the following expectations: 1) help the comprehensive collection of information on genetic alterations of the C1-INH gene; 2) create a database in which data can be searched and compared according to several flexible criteria; and 3) provide additional help in new mutation identification. The website uses MySQL, an open-source, multithreaded, relational database management system. The user-friendly graphical interface was written in the PHP web programming language. The website consists of two main parts, the freely browsable search function, and the password-protected data deposition function. Mutations of the C1-INH gene are divided in two parts: gross mutations involving DNA fragments >1 kb, and micro mutations encompassing all non-gross mutations. Several attributes (e.g., affected exon, molecular consequence, family history) are collected for each mutation in a standardized form. This database may facilitate future comprehensive analyses of C1-INH mutations and also provide regular help for molecular diagnostic testing of HAE patients in different centers. Hum Mutat 25:1,5, 2005. © 2004 Wiley-Liss, Inc. [source]


Raf kinase inhibitor protein correlates with sensitivity of nasopharyngeal carcinoma to radiotherapy,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2010
Lin Ruan
Abstract Raf kinase inhibitory protein (RKIP) is a metastasis suppressor whose expression is reduced in nasopharyngeal carcinoma (NPC) tissues and is absent in NPC metastases. To investigate the effect of RKIP on radiosensitivity of NPC, high metastatic 5-8F with low RKIP expression and non-metastatic 6-10B with high RKIP expression were stably transfected with plasmids that expressed sense and antisense RKIP cDNA. Overexpression of RKIP sensitized 5-8F cells to radiation-induced cell death, G2 -M cell cycle arrest and apoptosis. In contrast, downexpression of RKIP in 6-10B cells protected cells from radiation-induced cell death, G2 -M cell cycle arrest and apoptosis. In addition, RKIP expression altered the radiosensitivity of NPC cells through MEK and ERK phosphorylation changes of Raf-1/MEK/ERK signaling pathway. We further investigated the RKIP expression in NPC patients and its association with patients' survival after radiotherapy. Downexpression of RKIP was significantly correlated with advanced clinical stage, lymph node metastasis and radioresistance. Furthermore, survival curves showed that patients with RKIP downexpression had a poor prognosis and induced relapse. Multivariate analysis confirmed that RKIP expression was an independent prognostic indicator. The data suggested that RKIP was a potential biomarker for the radiosensitivity and prognosis of NPC, and its dysregulation might play an important role in the radioresistance of NPC. J. Cell. Biochem. 110: 975,984, 2010. © 2010 Wiley-Liss, Inc. [source]


Lifeguard/neuronal membrane protein 35 regulates Fas ligand-mediated apoptosis in neurons via microdomain recruitment

JOURNAL OF NEUROCHEMISTRY, Issue 1 2007
Miriam Fernández
Abstract Fas ligand (FasL)-receptor system plays an essential role in regulating cell death in the developing nervous system, and it has been implicated in neurodegenerative and inflammatory responses in the CNS. Lifeguard (LFG) is a protein highly expressed in the hippocampus and the cerebellum, and it shows a particularly interesting regulation by being up-regulated during postnatal development and in the adult. We show that over-expression of LFG protected cortical neurons from FasL-induced apoptosis and decreased caspase-activation. Reduction of endogenous LFG expression by small interfering RNA sensitized cerebellar granular neurons to FasL-induced cell death and caspase-8 activation, and also increased sensitivity of cortical neurons. In differentiated cerebellar granular neurons, protection from FasL-induced cell death could be attributed exclusively to LFG and appears to be independent of FLICE inhibitor protein. Thus, LFG is an endogenous inhibitor of FasL-mediated neuronal death and it mediates the FasL resistance of CNS differentiated neurons. Finally, we also demonstrate that LFG is detected in lipid rafts microdomains, where it may interact with Fas receptor and regulate FasL-activated signaling pathways. [source]


Functional proteomics of neurokinin B in the placenta indicates a novel role in regulating cytotrophoblast antioxidant defences

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2003
Grzegorz Sawicki
Abstract Neurokinin B (NKB) has recently been demonstrated to be secreted from the placenta in abnormally high amounts in preeclampsia (PE) and to cause hypertension in rats, suggesting it may be a mediator of some pathophysiological features of PE. It is also known that NKB receptors exist in the placenta. To determine the effect of high levels of NKB on the placenta, we have performed proteomics on five separate preparations of cultured purified human term cytotrophoblast cells. The results showed a statistically significant decrease in 20 proteins, of which five were unknown proteins. Proteins important in antioxidant defenses that decreased were thioredoxin, cyclophilin A, cytokeratin 1, and peroxiredoxin 5. Two proteins that inhibit intravascular anticoagulation, cytokeratin 1 and annexin 11 were also decreased. Pathways involving pro-inflammatory cytokine activation of NF-,B are opposed by Raf kinase inhibitor protein, which was also decreased. Cofilin 1, a protein involved in defense against bacteria, was also decreased. Among other proteins that were suppressed by NKB were proteasome proteins, desmoplakin, and calgizzarin. Western blots confirmed the decrease in cytokeratin 1 and cyclophilin A protein after NKB exposure. In PE, there is reduced antioxidant activity and increased intravascular coagulation. The findings that high levels of NKB, similar to those observed in PE, can impair these two classes of activity support the hypothesis that high NKB levels may contribute to the pathogenesis of PE. [source]


Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer

THE PROSTATE, Issue 3 2006
Zheng Fu
Abstract BACKGROUND Diminished expression of Raf kinase inhibitor protein (RKIP), an inhibitor of the Raf signaling cascade, promotes prostate cancer (PCa) metastasis in a murine model, suggesting that it is a metastasis suppressor gene. However, the prognostic significance of RKIP expression and its association with metastasis in PCa patients is unknown. METHODS To investigate RKIP protein expression is a prognostic marker in PCa we performed immunohistochemical staining for RKIP expression in tissue microarrays consisting of 758 non-neoplastic prostate tissues, primary tumors and metastases from 134 PCa patients. The Cox proportional-hazards model was used to adjust for covariates including Gleason score, tumor volume, tumor weight, clinical stage, digital rectal exam findings, serum PSA level and surgical margins. RESULTS RKIP expression was low in approximately 5%, 48%, and 89%of non-neoplastic prostate, primary tumors and metastases, respectively. Low RKIP expression in primary tumors was a strong positive predictive factor for PCa recurrence based on PSA levels. In patients whose primary tumors expressed high RKIP levels, the 7-year PSA recurrence rate was <,10%; whereas in patients with tumors with low RKIP expression the recurrence rate was 50% (P,<,0.001). Multivariate analysis revealed RKIP was an independent prognostic factor (P,<,0.001). CONCLUSION In contrast to increased expression of pro-tumorigenic genes, these results demonstrate decreased protein expression of a gene, for example, RKIP, can serve as a prognostic marker in PCa patients. © 2005 Wiley-Liss, Inc. [source]


New insights into hereditary angio-oedema: Molecular diagnosis and therapy

AUSTRALASIAN JOURNAL OF DERMATOLOGY, Issue 3 2010
Nikoletta Nagy
ABSTRACT Hereditary angio-oedema (HAE) is a rare but potentially life-threatening condition. Three types are now recognized. Types I and II HAE involve mutations in the C1NH (SERPING1) gene, encoding the C1 inhibitor protein, whereas type III HAE involves mutations in the F12 gene, encoding coagulation factor XII (Hageman factor). They share a common final pathway leading to increased bradykinin formation. HAE must be distinguished from acquired angio-oedema with C1 esterase inhibitor deficiency, angiotensin-converting enzyme inhibitor-induced angio-oedema and the much more common histaminergic angio-oedema, occurring with or without weals. Understanding the pathogenesis of HAE is leading to the introduction of new therapies that target the bradykinin receptor or inhibit kallikrein activity, innovations that will hopefully reduce morbidity and mortality in this group of severe genetic disease. [source]


Differential regulation of CaMKII inhibitor , protein expression after exposure to a novel context and during contextual fear memory formation

GENES, BRAIN AND BEHAVIOR, Issue 6 2010
K. Radwa
Understanding of the molecular basis of long-term fear memory (fear LTM) formation provides targets in the treatment of emotional disorders. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is one of the key synaptic molecules involved in fear LTM formation. There are two endogenous inhibitor proteins of CaMKII, CaMKII N, and N,, which can regulate CaMKII activity in vitro. However, the physiological role of these endogenous inhibitors is not known. Here, we have investigated whether CaMKII N, protein expression is regulated after contextual fear conditioning or exposure to a novel context. Using a novel CaMKII N, -specific antibody, CaMKII N, expression was analysed in the naďve mouse brain as well as in the amygdala and hippocampus after conditioning and context exposure. We show that in naďve mouse forebrain CaMKII N, protein is expressed at its highest levels in olfactory bulb, prefrontal and piriform cortices, amygdala and thalamus. The protein is expressed both in dendrites and cell bodies. CaMKII N, expression is rapidly and transiently up-regulated in the hippocampus after context exposure. In the amygdala, its expression is regulated only by contextual fear conditioning and not by exposure to a novel context. In conclusion, we show that CaMKII N, expression is differentially regulated by novelty and contextual fear conditioning, providing further insight into molecular basis of fear LTM. [source]


Modulation of cyclin dependent kinase inhibitor proteins and ERK1/2 activity in allylamine-injured vascular smooth muscle cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
Sarah A. Jones
Abstract Chronic oxidative injury by allylamine (AAM) induces proliferative vascular smooth muscle cell (vSMC) phenotypes in the rat aorta similar to those seen in rodent and human atherosclerotic lesions. The proliferative advantage of AAM vSMC compared to control cells is maintained with serial passage of the cells and the advantage is nullified when AAM cells are seeded on a collagen substrate. In this study, we evaluate the potential role of cyclin dependent kinase inhibitors, p27 and p21, and mitogen activated protein (MAP) kinases, ERK1/2, in mediating the proliferative advantage of AAM stressed vSMC over control cells on plastic or collagen substrates. p27 levels in randomly cycling cells were comparable in both cell types irrespective of the substrate. In contrast, basal levels of p21 were 1.9,±,0.3 (P,<,0.05)-fold higher in randomly cycling AAM cells seeded on plastic compared to controls, a difference that was lost on a collagen substrate. Following G0 synchronization, basal levels of both p27 and p21 were higher in AAM cells seeded on plastic compared to controls (1.7,±,0.2 and 2.0,±,0.3-fold, respectively, P,<,0.05), but these differences were lost upon mitogenic stimulation. Pyrrolidine dithiocarbamate (PDTC) decreased p27 and p21 levels in cycling AAM cells relative to controls in a substrate-dependent manner. AAM cells seeded on plastic exhibited enhanced ERK1/2 activation upon mitogenic stimulation; seeding on collagen nullified this advantage. The duration of ERK1/2 activation was prolonged in AAM cells independently of the seeding substrate. We conclude that substrate-dependent acquisition of proliferative phenotypes following repeated cycles of AAM injury correlates with modulation of the cyclin dependent kinase inhibitors, p27 and p21. © 2004 Wiley-Liss, Inc. [source]