Home About us Contact | |||
Inhibitor Okadaic Acid (inhibitor + okadaic_acid)
Selected AbstractsMitochondrial clustering at the vertebrate neuromuscular junction during presynaptic differentiationDEVELOPMENTAL NEUROBIOLOGY, Issue 6 2006Chi Wai Lee Abstract During vertebrate neuromuscular junction (NMJ) development, presynaptic motor axons differentiate into nerve termini enriched in synaptic vesicles (SVs). At the nerve terminal, mitochondria are also concentrated, but how mitochondria become localized at these specialized domains is poorly understood. This process was studied in cultured Xenopus spinal neurons with mitochondrion-specific probe MitoTracker and SV markers. In nerve-muscle cocultures, mitochondria were concentrated stably at sites where neurites and muscle cells formed NMJs, and mitochondria coclustered with SVs where neurites were focally stimulated by beads coated with growth factors. Labeling with a mitochondrial membrane potential-dependent probe JC-1 revealed that these synaptic mitochondria were with higher membrane potential than the extrasynaptic ones. At early stages of bead-stimulation, actin-based protrusions and microtubule fragmentation were observed in neurites at bead contact sites, suggesting the involvement of cytoskeletal dynamics and rearrangement during presynaptic differentiation. Treating the cultures with an actin polymerization blocker, latrunculin A (Ltn A), almost completely abolished the formation of actin-based protrusions and partially inhibited bead-induced mitochondrial and SV clustering, whereas the microtubule disrupting agent nocodazole was ineffective in inhibiting the clustering of mitochondria and SVs. Lastly, in contrast to Ltn A, which blocked bead-induced clustering of both mitochondria and SVs, the ser/thr phosphatase inhibitor okadaic acid inhibited SV clustering but not mitochondrial clustering. These results suggest that at developing NMJs, synaptogenic stimuli induce the clustering of mitochondria together with SVs at presynaptic terminals in an actin cytoskeleton-dependent manner and involving different intracellular signaling molecules. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] A Gonadotropin-Releasing Hormone Insensitive, Thapsigargin-Sensitive Ca2+ Store Reduces Basal Gonadotropin Exocytosis and Gene Expression: Comparison with Agonist-Sensitive Ca2+ StoresJOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2003J. D. Johnson Abstract We examined whether distinct Ca2+ stores differentially control basal and gonadotropin (GTH-II)-releasing hormone (GnRH)-evoked GTH-II release, long-term GTH-II secretion and contents, and GTH-II- , mRNA expression in goldfish. Thapsigargin (Tg)-sensitive Ca2+ stores mediated neither caffeine-evoked GTH-II release, nor salmon (s)GnRH- and chicken (c)GnRH-II-stimulated secretion; the latter responses were previously shown to involve ryanodine (Ry)-sensitive Ca2+ stores. Surprisingly, Tg decreased basal GTH-II release. This response was attenuated by prior exposure to sGnRH and caffeine, but was insensitive to the phosphatase inhibitor okadaic acid, the inhibitor of constitutive release brefeldin A and cGnRH-II. GTH-II- , mRNA expression was decreased at 24 h by 2 µm Tg, and by inhibiting (10 µm Ry) and stimulating (1 nm Ry) Ry receptors. Transient increases in GTH-II- , mRNA were observed at 2 h and 12 h following 10 µm and 1 nm Ry treatment, respectively. Effects of Tg, Ry and GnRH on long-term GTH-II secretion, contents and apparent production differed from one another, and these changes were not well correlated with changes in GTH-II- , mRNA expression. Our data show that GTH-II secretion, storage and transcription can be independently controlled by distinct Ca2+ stores. [source] Increased recombination frequency showing evidence of loss of interference is associated with abnormal testicular histopathologyMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2003Susannah Varmuza Abstract Nondisjunction leading to aneuploid gametes has been linked genetically to both increases and decreases in recombination frequency on the aneuploid chromosome. In the present study, we present physical evidence of increased frequency of recombination nodules as measured by Mut-S-like homologue-1 (MLH1) foci on pachytene chromosomes from sterile male mice homozygous for a mutation in the protein phosphatase 1c, (PP1c,) gene. The pattern of elevated recombination frequency in PP1c, mutant spermatocytes is consistent with a loss of interference. Previous studies demonstrated: (1) spermiogenesis is impaired starting at step 8 with a severe reduction in elongating and condensed spermatids; (2) spermatids and sperm exhibit elevated rates of DNA fragmentation; and (3) haploid gametes exhibit elevated levels of aneuploidy. Morphometric analysis of developing testes revealed that the first wave of meiosis proceeds at a normal rate in mutant testes, a surprising result given that the PP1 inhibitor okadaic acid has been shown to accelerate progression of spermatocytes from pachytene to the first meiotic division (MI). Evidence of abnormal testicular histopathology is apparent at 3 weeks, before the appearance of haploid gametes, eliminating the possibility that the mutant phenotype is caused by the presence of abnormal spermatids, but coincident with the appearance of the first set of mid to late pachytene spermatocytes. These observations lead us to conclude that the PP1c, mutation causes a complex phenotype, including subtle adverse effects on meiosis, possibly mediated by defective signaling between germ cells and Sertoli cells. Mol. Reprod. Dev. 64: 499,506, 2003. © 2003 Wiley-Liss, Inc. [source] The phosphoproteome of Fusarium graminearum at the onset of nitrogen starvationPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2010Christof Rampitsch Abstract Fusarium graminearum grown under stress, such as nutrient deprivation, activates, among others, the trichothecene pathway that produces the mycotoxin deoxynivalenol and its derivatives. The kinase inhibitor staurosporine reduced the production of trichothecenes by 39% compared with control in vitro. On the other hand, phosphatase inhibitor okadaic acid increased the amount by 72% compared with the control in vitro. This suggests that phosphorylation events are involved in the signalling pathway, leading to the activation of the trichothecene pathway. Three approaches were used to study the phosphoproteome of F. graminearum under nitrogen-limiting conditions: 2-DE (2-DE: IEF×SDS-PAGE) in combination with MS protein identification; SDS-PAGE in combination with off-line IMAC and TiO2 enrichment and gel electrophoresis LC-MS analysis; and a gel-free approach using strong anion exchange chromatography, IMAC and LC-MS. A total of 348 phosphorylation sites localized in 301 peptides from 241 proteins were identified. By 2-DE, 20 phosphoproteins were identified, nine of which underwent changes during the time course examined. Using gel electrophoresis LC-MS 231 phosphopeptides were identified from three samples (ten gel slices each) at time points of nitrogen starvation t=0, 6, and 12,h. The gel-free analysis added 70 peptides from 65 proteins to the total. Proteins of unknown function and enzymes of known function comprised the largest groups overall. Ten protein kinases and seven transcription factors were identified. This is the first reported phosphoproteome of F. graminearum. [source] Serine/Threonine Phosphatase Inhibitors Decrease Adrenergic Arylalkylamine N -Acetyltransferase Induction in the Rat Pineal GlandJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2001R. Spessert Abstract Adrenergic regulation of the pineal enzyme serotonin N -acetyltransferase [arylalkylamine N -acetyltransferase (AA-NAT); EC 2.3.1.87] accounts for the circadian rhythm in melatonin formation. In the present study, the role of protein phosphatases in the adrenergic regulation of rat pineal AA-NAT was investigated using specific inhibitors. In cultured pineals, the serine/threonine phosphatase type 1 and type 2A inhibitors okadaic acid and calyculin A significantly decreased adrenergically or cAMP-induced AA-NAT activity, whereas the serine/threonine phosphatase type 2B inhibitor cypermethrin and tyrosine phosphatase inhibitor dephostatin were ineffective. Reverse transcriptase-polymerase chain reaction (RT-PCR) data indicate that okadaic acid exerts its effect on cAMP-dependent AA-NAT induction by downregulating the amount of AA-NAT transcript. The ,third' messengers, inducible cAMP early repressor (ICER) and Fos-related antigene-2 (Fra-2), are believed to play a negative role in pineal AA-NAT transcription. Okadaic acid increased the cAMP responsiveness of neither ICER mRNA nor Fra-2 mRNA. Therefore, the regulatory role of pineal serine/threonine phosphatases in adrenergically stimulated AA-NAT expression probably does not depend on ICER or Fra-2. [source] |