Inhibition Leads (inhibition + lead)

Distribution by Scientific Domains


Selected Abstracts


Bcl- XL and MCL-1 constitute pertinent targets in ovarian carcinoma and their concomitant inhibition is sufficient to induce apoptosis

INTERNATIONAL JOURNAL OF CANCER, Issue 4 2010
Emilie Brotin
Abstract In ovarian carcinomas, recurrence and acquired chemoresistance are the first leading causes of therapeutic failure and are responsible for the poor overall survival rate. Cisplatin exposure of sensitive cells has been previously associated with a down-regulation of Bcl- XL expression and apoptosis, whereas recurrence was systematically observed when Bcl- XL expression was maintained. Bcl- XL down-regulation could thus constitute an interesting chemosensitizing strategy. We showed that a Bcl- XLtargeted RNA interference strategy efficiently sensitized chemoresistant ovarian carcinoma cells to cisplatin, but some of them were still able to re-proliferate. Considering the possible cooperation between Bcl- XLand MCL-1, we investigated the possibility to avoid recurrence in vitro using a multi-targeted RNAi strategy directed against these two anti-apoptotic proteins. We showed that their concomitant inhibition lead to massive apoptosis in absence of cisplatin, this multi-targeted RNAi approach being much more efficient than conventional chemotherapy. We thus demonstrated that Bcl- XL and MCL-1 cooperate to constitute together a strong molecular "bolt", which elimination could be sufficient to allow chemoresistant ovarian carcinoma cells apoptosis. Moreover, we demonstrated that in presence of a low concentration of cisplatin, the concomitant down-regulation of Bcl- XL and MCL-1 allowed a complete annihilation of tumour cells population thus avoiding subsequent recurrence in vitro in cell lines highly refractory to any type of conventional chemotherapy. Therefore, Bcl- XL and MCL-1 targeted strategies could constitute an efficient therapeutic tool for the treatment of chemoresistant ovarian carcinoma, in association with conventional chemotherapy. [source]


Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans

AGING CELL, Issue 1 2007
Malene Hansen
Summary Many conditions that shift cells from states of nutrient utilization and growth to states of cell maintenance extend lifespan. We have carried out a systematic lifespan analysis of conditions that inhibit protein synthesis. We find that reducing the levels of ribosomal proteins, ribosomal-protein S6 kinase or translation-initiation factors increases the lifespan of Caenorhabditis elegans. These perturbations, as well as inhibition of the nutrient sensor target of rapamycin (TOR), which is known to increase lifespan, all increase thermal-stress resistance. Thus inhibiting translation may extend lifespan by shifting cells to physiological states that favor maintenance and repair. Interestingly, different types of translation inhibition lead to one of two mutually exclusive outputs, one that increases lifespan and stress resistance through the transcription factor DAF-16/FOXO, and one that increases lifespan and stress resistance independently of DAF-16. Our findings link TOR, but not sir-2.1, to the longevity response induced by dietary restriction (DR) in C. elegans, and they suggest that neither TOR inhibition nor DR extends lifespan simply by reducing protein synthesis. [source]


Quantitative analysis of human mitochondrial DNA using a real-time PCR assay

HIV MEDICINE, Issue 3 2003
K Gourlain
Objectives Known for their ability to inhibit the human DNA polymerase-,, nucleoside analogues induce toxic effects on mitochondria ranging from increased serum lactate levels to fatal lactic acidosis. DNA polymerase-, ensures the mitochondrial DNA (mtDNA) replication and, thus, its inhibition leads to the decrease of the mtDNA. We describe a real-time PCR assay for mtDNA quantification associating DNA extraction procedures applied on peripheral blood mononuclear cells (PBMCs) and subcutaneous adipose tissues and to study the antiretroviral effect on mitochondria. Methods Total DNA was extracted from PBMCs and subcutaneous adipose tissues. Nuclear and mitochondrial genes were amplified to determine the number of copies of mtDNA per cell using a cyt-b recombinant plasmid as standard control. We analysed eight HIV-infected asymptomatic patients never treated, four patients who had been treated for 6 months with highly active antiretroviral therapy (HAART) and six non-infected donors. Results The mtDNA quantification gave rise to reproducible results as the mean coefficients of variation were 1.09% for replicates of samples undertaken 10 times within the same run, and 5.78% and 3.7% for replicates tested in five different runs at 1:100 and 1:1000 dilutions, respectively. Median levels of mtDNA in PBMCs of healthy donors, naive and treated HIV-infected patients were 2.94, 2.78 and 1.93 log HIV-1 RNA copies/mL, respectively. Whereas DNA from PBMCs was shown to be devoid of inhibitors, subcutaneous adipose tissues needed an extra treatment as they were found to be highly inhibited. Conclusions The method generated consistent and reproducible results and was successfully applied to DNAs extracted from PBMCs and subcutaneous adipose tissues with adapted extraction. The mtDNA changes in PBMCs were found to be fast as they fall off after 6 months' therapy, decreasing from 2.78 to 1.93 log copies/mL. [source]


Sphingosine kinase 1 inhibition sensitizes hormone-resistant prostate cancer to docetaxel

INTERNATIONAL JOURNAL OF CANCER, Issue 11 2009
Lysann Sauer
Abstract It has recently been shown that docetaxel chemotherapy is effective in prolonging life in patients with prostate cancer (PCa). We have investigated potential ways of increasing the effectiveness of chemotherapy in this disease. We have previously reported that sphingosine kinase 1 (SphK1) inhibition is a key step in docetaxel-induced apoptosis in the PC-3 PCa cell line and that pharmacologicalSphK1 inhibition is chemosensitizing in the docetaxel-resistant PCa LNCaP cell line. In this study we have addressed the mechanism of docetaxel-induced apoptosis of PC-3 cells and identified SphK1-dependent and -independent components. We have shown that SphK1 inhibition by docetaxel is a two-step process involving an initial loss of enzyme activity followed by a decrease in SphK1 gene expression. Using hormoneresistant PC-3 and DU145 PCa cells we have demonstrated that both pharmacological and siRNA-mediated SphK1 inhibition leads to a four-fold decrease in the docetaxel IC50 dose. This work points out to potential ways of increasing the effectiveness of chemotherapy for PCa by SphK1 inhibition. © 2009 UICC [source]


BTG2 antagonizes Pin1 in response to mitogens and telomere disruption during replicative senescence

AGING CELL, Issue 5 2010
Keith Wheaton
Summary Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening,induced replicative senescence is dependent on the ATM-p53-p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53-responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti-proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum-dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late-passage cells, and ectopic Pin1 expression rescues cells from BTG2-induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts. [source]


JNK is constitutively active in mantle cell lymphoma: cell cycle deregulation and polyploidy by JNK inhibitor SP600125,

THE JOURNAL OF PATHOLOGY, Issue 1 2009
Miao Wang
Abstract Mantle cell lymphoma (MCL) is characterized by genetic instability and a poor prognosis. Many blastoid variants are (hypo)tetraploid and have an even worse prognosis. We investigated the role of signalling by mitogen-activated protein kinases (MAPKs) in MCL. As compared to normal tonsil B cells, MCL cells showed higher activation of the JNK MAPK in both an MAPK array and a sandwich ELISA assay. Immunohistochemistry showed overexpression of phospho (p)-JNK (Thr183/Tyr185) in 30 of 37 MCL cases. Inhibition of p-JNK with SP600125 resulted in growth arrest in all four MCL cell lines (Jeko-1, HBL-2, UPN-1, Granta-519), which could be partly reversed by the addition of CD40L and IL-4. Furthermore, SP600125 led to G2/M phase arrest on day 1 and a striking increase in endoreduplication on day 2 and day 3, which was confirmed by karyotype analysis. G2/M arrest was associated with down-regulation of EGR1 and p21 protein expression. SP600125-induced polyploidy could be blocked by the BCL-2 inhibitor YC137. These data suggest that constitutive JNK activity is necessary to promote proliferation and maintain diploidy in MCL. JNK inhibition leads to cell cycle deregulation and endoreduplication, mimicking the tetraploid state seen in a subset of MCL cases. Thus, our data also provide an experimental model to study polyploid MCL cells. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]