In-gel Digestion (in-gel + digestion)

Distribution by Scientific Domains


Selected Abstracts


In-gel digestion with endoproteinase LysC

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2003
Y. Wada
[source]


Analysis of integral membrane proteins by heat gel-embedment combined with improved in-gel digestions

ELECTROPHORESIS, Issue 23 2009
Jian Zhou
Abstract Analysis of integral membrane proteins (IMPs) presents a special challenge because of their hydrophobic nature and low abundance. Here, a new method was developed, which involved heat gel-embedment and improved in-gel digestion of the proteins. Membrane protein lysate containing detergents was mixed with acrylamide solution and the proteins were embedded when the gel polymerized. For comparison, the protein embedment was made at different temperatures (25, 35 or 45°C), and the in-gel digestions were performed in the presence of 0.1% RapiGest reagent (ALS), 0.1% sodium deoxycholate and 10% ACN, respectively. The resultant peptides were extracted and analyzed by capillary liquid chromatography coupled with tandem mass spectrometry. Compared with that at 25°C, gel-embedment at 45°C improved the protein embedment and thus protein identification, with the identified IMPs increased by 27%. 0.1% sodium deoxycholate was more efficient than 0.1% ALS and 10% ACN in terms of improving the digestion and tryptic digest recovery of the gel-embedded proteins particularly the hydrophobic IMPs. Out of the 326 IMPs identified by heat gel-embedment combined with improved in-gel digestion strategies, 149 (46%) proteins had at least two mapped transmembrane domains. These results indicate that our newly developed protocol could facilitate the high throughput analysis of integral membrane proteome. [source]


Cover Picture: Electrophoresis 6'09

ELECTROPHORESIS, Issue 6 2009
Article first published online: 23 MAR 200
Issue no. 6 is an Emphasis Issue with 7 articles on various aspects of "Proteins and Proteomics" while the remaining 15 articles are arranged into 4 different parts on "Genotyping and Sequencing", "Enantioseparations", "Non Aqueous CE", and "Methodologies and Applications." Selected articles are: Differences in protein distribution between human plasma preparations, EDTA-plasma and heparin-plasma, analyzed by non-denaturing micro-2-DE and MALDI-MS PMF 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers Centrifugal methods and devices for rapid in-gel digestion of proteins [source]


High MS-compatibility of silver nitrate-stained protein spots from 2-DE gels using ZipPlates and AnchorChips for successful protein identification

ELECTROPHORESIS, Issue 10 2007
Grit Nebrich
Abstract The availability of easy-to-handle, sensitive, and cost-effective protein staining protocols for 2-DE, in conjunction with a high compatibility for subsequent MS analysis, is still a prerequisite for successful proteome research. In this article we describe a quick and easy-to-use methodological protocol based on sensitive, homogeneous, and MS-compatible silver nitrate protein staining, in combination with an in-gel digestion, employing the Millipore 96-well ZipPlate system for peptide preparation. The improved quality and MS compatibility of the generated protein digests, as compared to the otherwise weakly MS-compatible silver nitrate staining, were evaluated on real tissue samples by analyzing 192 Coomassie-stained protein spots against their counterparts from a silver-stained 2-DE gel. Furthermore, the applicability of the experimental setup was evaluated and demonstrated by the analysis of a large-scale MALDI-TOF MS experiment, in which we analyzed an additional ,1000 protein spots from 2-DE gels from mouse liver and mouse brain tissue. [source]


Age-dependent variations of cell response to oxidative stress: Proteomic approach to protein expression and phosphorylation

ELECTROPHORESIS, Issue 14 2005
Yuri Miura Dr.
Abstract We investigated the protein profiles of variously aged rat astrocytes in response to oxidative stress. After H2O2 -exposure of cells at 100,µM for 30,min, the relative intensity of ten protein spots changed on two-dimensional (2-D) gels compared with control gels after silver staining. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) analysis after in-gel digestion revealed that six of these spots corresponded to three kinds of proteins, each of which was composed of a protein and its modified form with a different isoelectric point (pI). These three proteins were identified as peroxiredoxins (PRDXs) II and III, and calpactin I light chain (p11). H2O2 -exposure increased the intensity of the spot with lower pI and simultaneously decreased that of the spot with higher pI for both PRDXs II and III. In addition, the expression of annexin VII, S -adenosyl- L -homocysteine hydrolase, elongation factor II fragment (EF-II), and adenosine deaminase was increased by H2O2 -exposure in astrocytes from variously aged rats. Using the Pro-Q® Diamond staining, heat shock protein 60,kDa (Hsp 60) and ,-tubulin were observed to be phosphorylated upon H2O2 -exposure. While phosphorylation of ,-tubulin was correlated positively with age, the changes in abundance of ten protein spots as described above were independent of age. These results suggest that aging does not suppress the responses aimed at limiting injury and promoting repair brought about by severe oxidative stress, and might affect cell dynamics including the formation of microtubules. [source]


Thiol-reactive dyes for fluorescence labeling of proteomic samples

ELECTROPHORESIS, Issue 14 2003
Kamala Tyagarajan
Abstract Covalent derivatization of proteins with fluorescent dyes prior to separation is increasingly used in proteomic research. This paper examines the properties of several commercially available iodoacetamide and maleimide dyes and discusses the conditions and caveats for their use in labeling of proteomic samples. The iodoacetamide dyes BODIPY TMR cadaverine IA and BODIPY Fl C1 -IA were highly specific for cysteine residues and showed little or no nonspecific labeling even at very high dye:thiol ratios. These dyes also showed minimal effects on pI's of standard proteins. Some iodoacetamide dyes, (5-TMRIA and eosin-5-iodoacetamide) and some maleimide dyes (ThioGlo I and Rhodamine Red C2 maleimide) exhibited nonspecific labeling at high dye:thiol ratios. Labeling by both iodoacetamide and maleimide dyes was inhibited by tris(2-carboxyethyl)phosphine (TCEP); interactions between TCEP and dye were also observed. Thiourea, an important component of sample solubilization cocktails, inhibited labeling of proteins with iodoacetamide dyes but not with maleimide dyes. Maleimide dyes may serve as an alternative for labeling proteins where it is essential to have thiourea in the solubilization buffer. Covalent derivatization by BODIPY TMR cadaverine IA, BODIPY Fl C1 -IA or Rhodamine Red C2 maleimide was also demonstrated to be compatible with in-gel digestion and peptide mass fingerprinting by matrix assisted laser desorption/ionization-mass spectrometry and allowed successful protein identification. [source]


Expression of psoriasis-associated fatty acid-binding protein in senescent human dermal microvascular endothelial cells

EXPERIMENTAL DERMATOLOGY, Issue 9 2004
Moon Kyung Ha
Abstract:, Aging is associated with the progressive pathophysiologic modification of endothelial cells. In vitro endothelial cell senescence is accompanied by proliferative activity failure and by perturbations in gene and protein expressions. Moreover, this cellular senescence in culture has been proposed to reflect processes that occur in aging organisms. In order to observe the changing patterns of protein expression in senescent human dermal microvascular endothelial cells (HDMECs), proteins obtained from both early- and late-passaged HDMECs were separated by two-dimensional electrophoresis, visualized by silver staining, and quantified by image processing. Proteins of interest were extracted by in-gel digestion with trypsin and quantified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), by searching the National Center for Biotechnology Information protein-sequence database. More than 2000 spots were detected by 2D electrophoresis within a linear pH range of 3,10. Twenty-two major differentially expressed spots were observed in serially passaged HDMECs and identified with high confidence by MALDI-TOF-MS. One of these spots was found to be a 14,15 kDa psoriasis-associated fatty acid-binding protein (PA-FABP) with high affinity for long-chain fatty acids. The expression of PA-FABP was confirmed to be elevated in senescent HDMECs (passage 20) by fluorescence-activated cell sorting (FACS), confocal laser microscopy, and by immunohistochemistry in aged human skin tissue. Our results suggest that the overexpression of FABP in cultured senescent HDMECs is closely related to skin aging. [source]


A convenient purification and preconcentration of peptides with ,-cyano-4-hydroxycinnamic acid matrix crystals in a pipette tip for matrix-assisted laser desorption/ionization mass spectrometry,

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 1 2010
Helena, ehulková
Abstract Peptide samples derived from enzymatic in-gel digestion of proteins resolved by gel electrophoresis often contain high amount of salts originating from reaction and separation buffers. Different methods are used for desalting prior to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS), e.g. reversed-phase pipette tip purification, on-target washing, adding co-matrices, etc. As a suitable matrix for MALDI MS of peptides, ,-cyano-4-hydroxycinnamic acid (CHCA) is frequently used. Crystalline CHCA shows the ability to bind peptides on its surface and because it is almost insoluble in acidic water solutions, the on-target washing of peptide samples can significantly improve MALDI MS signals. Although the common on-target washing represents a simple, cheap and fast procedure, only a small portion of the available peptide solution is efficiently used for the subsequent MS analysis. The present approach is a combination of the on-target washing principle carried out in a narrow-end pipette tip (e.g. GELoader tip) and preconcentration of peptides from acidified solution by passing it through small CHCA crystals captured inside the tip on a glass microfiber frit. The results of MALDI MS analysis using CHCA-tip peptide preconcentration are comparable with the use of homemade POROS R2 pipette tip microcolumns. Advantages and limitations of this approach are discussed. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Investigation of tyrosine nitration in proteins by mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 6 2001
Ann-Sofi Petersson
Abstract In vivo nitration of tyrosine residues is a post-translational modification mediated by peroxynitrite that may be involved in a number of diseases. The aim of this study was to evaluate possibilities for site-specific detection of tyrosine nitration by mass spectrometry. Angiotensin II and bovine serum albumin (BSA) nitrated with tetranitromethane (TNM) were used as model compounds. Three strategies were investigated: (i) analysis of single peptides and protein digests by matrix-assisted laser desorption/ionization (MALDI) peptide mass mapping, (ii) peptide mass mapping by electrospray ionization (ESI) mass spectrometry and (iii) screening for nitration by selective detection of the immonium ion of nitrotyrosine by precursor ion scanning with subsequent sequencing of the modified peptides. The MALDI time-of-flight mass spectrum of nitrated angiotensin II showed an unexpected prompt fragmentation involving the nitro group, in contrast to ESI-MS, where no fragmentation of nitrated angiotensin II was observed. The ESI mass spectra showed that mono- and dinitrated angiotensin II were obtained after treatment with TNM. ESI-MS/MS revealed that the mononitrated angiotensin II was nitrated on the side-chain of tyrosine. The dinitrated angiotensin II contained two nitro groups on the tyrosine residue. Nitration of BSA was confirmed by Western blotting with an antibody against nitrotyrosine and the sites for nitration were investigated by peptide mass mapping after in-gel digestion. Direct mass mapping by ESI revealed that two peptides were nitrated. Precursor ion scanning for the immonium ion for nitrotyrosine revealed two additional partially nitrated peptides. Based on the studies with the two model compounds, we suggest that the investigation of in vivo nitration of tyrosine and identification of nitrated peptides might be performed by precursor ion scanning for the specific immonium ion at m/z 181.06 combined with ESI-MS/MS for identification of the specific nitration sites. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Identification of four proteins from the small subunit of the mammalian mitochondrial ribosome using a proteomics approach

PROTEIN SCIENCE, Issue 3 2001
Emine Cavdar Koc
Abstract Proteins in the small subunit of the mammalian mitochondrial ribosome were separated by two-dimensional polyacrylamide gel electrophoresis. Four individual proteins were subjected to in-gel Endoprotease Lys-C digestion. The sequences of selected proteolytic peptides were obtained by electrospray tandem mass spectrometry. Peptide sequences obtained from in-gel digestion of individual spots were used to screen human, mouse, and rat expressed sequence tag databases, and complete consensus cDNAs for these species were deduced in silico. The corresponding protein sequences were characterized by comparison to known ribosomal proteins in protein databases. Four different classes of mammalian mitochondrial small subunit ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins are homologs to Escherichia coli S9 and S5 proteins. The presence of these newly identified mitochondrial ribosomal proteins are also investigated in the Drosophila melanogaster, Caenorhabditis elegans, and in the genomes of several fungi. [source]


Polyacrylamide lamination enables mass spectrometry compatible staining and in-gel digestion of proteins separated by agarose IEF

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 19 2007
Jukka Hellman Dr.
Abstract Agarose IEF enables the separation of large proteins and protein complexes. A complication of agarose gels attached onto polyester support is the lack of sensitive protein staining methods compatible with protein analysis and identification protocols. In this study, agarose IEF gels were used to separate the proteins, followed by layering the agarose with polyacrylamide. The formed laminate gels were seamless and durable and they were readily detached from the polyester. The gels were amenable to MS compatible staining. The sensitivity obtained with the acidic silver staining method was 20,50,ng/band of myoglobin. Laminated agarose was a suitable matrix for in-gel digestion based generation of tryptic peptides for MALDI-MS. [source]


Comparative Proteomics Analysis of the Proteins Associated With Laryngeal Carcinoma-Related Gene 1,

THE LARYNGOSCOPE, Issue 2 2006
Xiaopeng Zhang PhD
Abstract Objectives: A novel gene, laryngeal carcinoma-related gene 1 (LCRG1), had the characteristics of tumor-suppressor genes. It was cloned in our laboratory. The objective was to find and characterize the proteins related to LCRG1 and to elucidate the molecular mechanism of LCRG1. Study Design: We used the established cell lines of Hep-2/LCRG1 (Hep-2 cells transfected by recombinant plasmid pcDNA3.1[+]/LCRG1) and Hep-2/pcDNA3.1(+) (Hep-2 cells transfected by control vector pcDNA3.1[+]) as cell models. Methods: Two-dimensional gel electrophoresis (2-DE) technology was performed to separate the proteins of Hep-2/LCRG1 and Hep-2/pcDNA3.1(+) cell lines, respectively. The differential protein spots were analyzed by software analysis, subject to in-gel digestion, and identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and electrospray ionization,quadruple time-of-flight MS/MS (ESI-Q-TOF MS/MS). Then the differential expression levels of partial identified proteins were determined by Western blotting analysis and quantitative real-time reverse transcriptase,polymerase chain reaction. Results: The results showed the attained 2-DE patterns of the two cell lines were well-resolved and reproducible. There were 1075 ± 43 and 1027 ± 23 protein spots observed in Hep-2/LCRG1 and Hep-2/pcDNA3.1(+) cell lines, respectively. The average matching rate of the two cell lines was 91%. Twenty-six differentially expressed protein spots were identified (twenty spots for MALDI-TOF-MS, six spots for ESI-Q-TOF MS/MS). Most of the characterized proteins were characterized as the members of enzymes (phosphoglycerate mutase, manganese superoxide dismutase, and so on), transcription proteins (rho gdp dissociation inhibitor), and so on. Those identified proteins might contribute to the tumor-suppressive function of LCRG1. The differential expression levels of the partial proteins were confirmed by real-time polymerase chain reaction and Western blotting. Conclusions: We tentatively proposed those differentially expressed proteins were involved in the tumor-suppressive process related to LCRG1. These data will be helpful to elucidate the molecular mechanism of LCRG1. [source]


Analysis of integral membrane proteins by heat gel-embedment combined with improved in-gel digestions

ELECTROPHORESIS, Issue 23 2009
Jian Zhou
Abstract Analysis of integral membrane proteins (IMPs) presents a special challenge because of their hydrophobic nature and low abundance. Here, a new method was developed, which involved heat gel-embedment and improved in-gel digestion of the proteins. Membrane protein lysate containing detergents was mixed with acrylamide solution and the proteins were embedded when the gel polymerized. For comparison, the protein embedment was made at different temperatures (25, 35 or 45°C), and the in-gel digestions were performed in the presence of 0.1% RapiGest reagent (ALS), 0.1% sodium deoxycholate and 10% ACN, respectively. The resultant peptides were extracted and analyzed by capillary liquid chromatography coupled with tandem mass spectrometry. Compared with that at 25°C, gel-embedment at 45°C improved the protein embedment and thus protein identification, with the identified IMPs increased by 27%. 0.1% sodium deoxycholate was more efficient than 0.1% ALS and 10% ACN in terms of improving the digestion and tryptic digest recovery of the gel-embedded proteins particularly the hydrophobic IMPs. Out of the 326 IMPs identified by heat gel-embedment combined with improved in-gel digestion strategies, 149 (46%) proteins had at least two mapped transmembrane domains. These results indicate that our newly developed protocol could facilitate the high throughput analysis of integral membrane proteome. [source]