Important Virulence Determinant (important + virulence_determinant)

Distribution by Scientific Domains


Selected Abstracts


The Versatility of Helicobacter pylori CagA Effector Protein Functions: The Master Key Hypothesis

HELICOBACTER, Issue 3 2010
Steffen Backert
Abstract Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type-IV secretion system. Injected CagA becomes tyrosine-phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation-dependent and phosphorylation-independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high-resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence-associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ,master key' that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin-cytoskeletal rearrangements and the disruption of cell-to-cell junctions as well as proliferative, pro-inflammatory and anti-apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon. [source]


Critical determinants of the interactions of capsule-expressing Neisseria meningitidis with host cells: the role of receptor density in increased cellular targeting via the outer membrane Opa proteins

CELLULAR MICROBIOLOGY, Issue 10 2005
Christopher J. Bradley
Summary Neisseria meningitidis capsule is an important virulence determinant required for survival in the blood but is reportedly involved in inhibiting cellular interactions mediated by meningococcal outer membrane adhesins. However, evidence from our previous studies suggested that target receptor density on host cells may determine whether or not capsulate bacteria can adhere via outer membrane proteins such as Opa. To confirm this and evaluate the impact of capsulation on bacterial interactions, we used Opa+ and Opa, derivatives of capsulate and acapsulate meningococcal isolates and transfected cell lines expressing CEACAM1, a receptor targeted by Opa proteins. To assess the extent and rate of cell association, subpopulations of stably transfected Chinese hamster ovary cells with different receptor levels were derived. A quantitative correlation of CEACAM1 levels and Opa-dependent binding of both capsulate and acapsulate bacteria was demonstrated, which was accelerated at high receptor densities. However, it appears that invasion by Opa+ capsulate bacteria only occurs when a threshold level of CEACAM density has been reached. Target cells expressing high levels of CEACAM1 (MFI c. 400) bound threefold more, but internalized 20-fold more Opa+ capsulate bacteria than those with intermediate expression (MFI c. 100). No overall selection of acapsulate phenotype was observed in the internalized population. These observations confirm that capsule may not be an adequate barrier for cellular interactions and demonstrate the role of a host factor that may determine capsulate bacterial invasion potential. Upregulation of CEACAMs, which can occur in response to inflammatory cytokines, could lead to translocation of a small number of fully capsulate bacteria across mucosal epithelium into the bloodstream sufficient to cause a rapid onset of disseminated disease. Thus the data also suggest a novel rationale for the epidemiological observations that individuals with prior infectious/inflammatory conditions carry a high risk of invasive meningococcal disease. [source]


Structural analysis of a novel anionic polysaccharide from Porphyromonas gingivalis strain W50 related to Arg-gingipain glycans

MOLECULAR MICROBIOLOGY, Issue 3 2005
Nikolay Paramonov
Summary The Arg-gingipains (RgpsA and B) of Porphyromonas gingivalis are a family of extracellular cysteine proteases and are important virulence determinants of this periodontal bacterium. A monoclonal antibody, MAb1B5, which recognizes an epitope on glycosylated monomeric RgpAs also cross-reacts with a cell-surface polysaccharide of P. gingivalis W50 suggesting that the maturation pathway of the Arg-gingipains may be linked to the biosynthesis of a surface carbohydrate. We report the purification and structural characterization of the cross-reacting anionic polysaccharide (APS), which is distinct from both the lipopolysaccharide and serotype capsule polysaccharide of P. gingivalis W50. The structure of APS was determined by 1D and 2D NMR spectroscopy and methylation analysis, which showed it to be a phosphorylated branched mannan. The backbone is built up of ,-1,6-linked mannose residues and the side-chains contain ,-1,2-linked mannose oligosaccharides of different lengths (one to two sugar residues) attached to the backbone via 1,2-linkage. One of the side-chains in the repeating unit contains Man,1-2Man,1-phosphate linked via phosphorus to a backbone mannose at position 2. De- O -phosphorylation of APS abolished cross-reactivity suggesting that Man,1-2Man,1-phosphate fragment forms part of the epitope recognized by MAb1B5. This phosphorylated branched mannan represents a novel polysaccharide that is immunologically related to the post-translational additions of Arg-gingipains. [source]


Crystallization and preliminary crystallographic analysis of the bacterial capsule assembly-regulating tyrosine phosphatases Wzb of Escherichia coli and Cps4B of Streptococcus pneumoniae

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 8 2009
Hexian Huang
Bacterial tyrosine kinases and their cognate phosphatases are key players in the regulation of capsule assembly and thus are important virulence determinants of these bacteria. Examples of the kinase/phosphatase pairing are found in Gram-negative bacteria such as Escherichia coli (Wzc and Wzb) and in Gram-positive bacteria such as Streptococcus pneumoniae (CpsCD and CpsB). Although Wzb and Cps4B are both predicted to dephosphorylate the C-terminal tyrosine cluster of their cognate tyrosine kinase, they appear on the basis of protein sequence to belong to quite different enzyme classes. Recombinant purified proteins Cps4B of S. pneumoniae TIGR4 and Wzb of E. coli K-30 have been crystallized. Wzb crystals belonged to space-group family P3x21 and diffracted to 2.7,Å resolution. Crystal form I of Cps4B belonged to space-group family P4x212 and diffracted to 2.8,Å resolution; crystal form II belonged to space group P212121 and diffracted to 1.9,Å resolution. [source]