Home About us Contact | |||
Implant Surface Topography (implant + surface_topography)
Selected AbstractsCovalently-linked hyaluronan promotes bone formation around Ti implants in a rabbit modelJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 5 2009Marco Morra Abstract The goal of this study was the in vivo evaluation of nanoporous titanium (Ti) implants bearing a covalently linked surface hyaluronan (HA) layer. Implant surface topography and surface chemistry were previously evaluated by scanning electron micorscopy and X-ray photoelectron spectroscopy. Results showed that the surface modification process did not affect surface topography, yielding a homogeneously HA-coated nanotextured implant surface. In vivo evaluation of implants in both cortical and trabecular bone of rabbit femurs showed a significant improvement of both bone-to-implant contact and bone ingrowth at HA-bearing implant interfaces at 4 weeks. The improvement in osteointegration rate was particularly evident in the marrow-rich trabecular bone (bone-to-implant contact: control 22.5%; HA-coated 69.0%, p,<,0.01). Mechanical testing (push-out test) and evaluation of interfacial bone microhardness confirmed a faster bone maturation around HA-coated implants (Bone Maturation Index: control 79.1%; HA-coated 90.6%, p,<,0.05). Suggestions based on the biochemical role of HA are presented to account for the observed behavior. Published by Wiley Periodicals, Inc. J Orthop Res 27: 657,663, 2009 [source] Bone Formation at Titanium Implants Prepared with Iso- and Anisotropic Surfaces of Similar Roughness: An in Vivo StudyCLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, Issue 1 2005Anna Göransson DDS ABSTRACT Background: Implant surface topography influences the bone response after implantation. However, the importance of surface orientation is not known. Purpose: The aim of this study was to investigate the bone tissue response and the stability of titanium implants prepared with isotropic and anisotropic surfaces of similar roughness. Materials and Methods: A total of 18 implants were divided into two groups and were inserted into the femurs of nine rabbits for 12 weeks. Confocal laser scanning microscopy was used for the topographic description to verify that the two different surfaces were modified as intended. The stability of the implants was recorded by resonance frequency (RF) measurements at insertion and at time of removal, after which the implants were evaluated histomorphometrically. Results: RF measurements showed that implant stability increased with time. However, there was no significant difference between the two different surface modifications at insertion and after 12 weeks. The histomorphometric comparison revealed no statistically significant differences in regard to either bone-to-metal contact or bone area inside the threads. Conclusion: Titanium implants prepared with isotropic and anisotropic surfaces of similar roughness integrate similarly to bone during the 3 months after implantation. [source] Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory studyCLINICAL ORAL IMPLANTS RESEARCH, Issue 2 2010Afsheen Tabassum Abstract Objective: The aim of this biomechanical study was to assess the interrelated effect of both surface roughness and surgical technique on the primary stability of dental implants. Material and methods: For the experiment, 160 screw-designed implants (Biocomp®), with either a machined or an etched surface topography, were inserted into polyurethane foam blocks (Sawbones®). As an equivalent of trabecular bone, a density of 0.48 g/cm3 was chosen. To mimic the cortical layer, on top of these blocks short-fibre-filled epoxy sheets were attached with a thickness varying from 0 to 2.5 mm. The implant sites were prepared using either a press-fit or an undersized technique. To measure the primary stability of the implant, both the insertion and the removal torques were scored. Results: Independent of the surgical technique used, both implant types showed an increased insertion and removal torque values with increasing cortical thickness, although >2 mm cortical layer no further increase in insertion torque was observed. In the models with only trabecular bone (without cortical layer) and with a 1 mm cortical layer, both implant types showed a statistically higher insertion and removal torque values for undersized compared with the press-fit technique. In addition, etched implants showed a statistically higher insertion and removal torque mean values compared with machined implants. In the models with 2 and 2.5 mm cortical layers, with respect to the insertion torque values, no effect of either implantation technique or implant surface topography could be observed. Conclusion: The placement of etched implants in synthetic bone models using an undersized preparation technique resulted in enhanced primary implant stability. A correlation was found between the primary stability and the cortical thickness. However, at or above a cortical thickness of 2 mm, the effect of both an undersized surgical approach, as also the presence of a roughened (etched) implant surface, had no extra effect. Besides the mechanical aspects, the biological effect of undersized drilling, i.e. the bone response on the extra insertion torque forces should also be elucidated. Therefore, additional in vivo studies are needed. To cite this article: Tabassum A, Meijer GJ, Wolke JGC, Jansen JA. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clin. Oral Impl. Res. 21, 2010; 213,220. doi: 10.1111/j.1600-0501.2009.01823.x [source] Implant surfaces and design (Working Group 4)CLINICAL ORAL IMPLANTS RESEARCH, Issue 2009Niklaus P. Lang Abstract Introduction: The remit of this working group (4) was to update existing knowledge on the effects of implant surface topography, composition and design on bone integration and re-osseointegration. Material and methods: Based on five narrative reviews that were performed following a defined search strategy, clinical implications as well as suggestions for further research have been formulated. Results: The results and conclusions of the review processes in the following papers together with the group consensus, clinical implications and directions for future research are presented: 1. Effects of titanium surface topography on bone integration. 2. Effects of implant surface coatings and composition on bone integration (two reviews). 3. Effects of different implant surfaces and designs on marginal bone level alterations. 4. Re-osseointegration onto previously contaminated implant surfaces. [source] Histological evaluation of oral implants inserted with different surgical techniques into the trabecular bone of goatsCLINICAL ORAL IMPLANTS RESEARCH, Issue 4 2007Manal M. Shalabi Abstract Objective: The aim of this study was to investigate the influence of implant surface topography and surgical technique on bone response. Material and methods: For the experiment, 48 screw-designed implants were used with two different surface finishes, i.e. machined and ,blasted, etched'. The implants were inserted into the left and right medial femoral condyle of eight goats using three different surgical approaches: press-fit (implant diameter=implant bed diamete(r), undersized (implant bed diameter
| |